Skip to main content
Log in

Investigating Arsenic Bioavailability and Bioaccumulation by the Freshwater Oligochaete Lumbriculus variegatus

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The complex and variable composition of natural sediments makes it difficult to predict the bioavailability and bioaccumulation of sediment-bound contaminants. Several approaches, including an experimental model using artificial particles as analogues for natural sediments, have been proposed to overcome this problem. For this work, we applied this experimental device to investigate the uptake and bioaccumulation of AsIII by the freshwater oligochaete Lumbriculus variegatus. Five different particle systems were selected, and particle–water partition coefficients for AsIII were calculated. The influence of different concentrations of commercial humic acids was also investigated, but this material had no effect on bioaccumulation. In the presence of particulate matter, the bioaccumulation of AsIII by the oligochaetes did not depend solely on the levels of chemical dissolved but also on the amount sorbed onto the particles and the strength of that binding. This study confirms that the use of artificial particles may be a suitable experimental model for understanding the possible interactions that may occur between contaminants and particulate matter. In addition, it was found that the most hydrophobic resin induced an increase in arsenic bioavailability, leading to the highest bioaccumulation to L. variegatus compared with animals that were exposed to water only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agency for Toxic Substances Disease Registry (2007) Toxicological profile for arsenic. Public Health Service, ATSDR, Atlanta, GA

    Google Scholar 

  • American Public Health Association–American Water Works Association–Water Pollution Control Federation (2005) Standards methods for the examination of water and wastewater, 21th ed. APHA–AWWA–WPCF, Baltimore, MD

  • American Society for Testing Materials (2010) Standard test methods for measuring the toxicity of sediment-associated contaminants with fresh water invertebrates (ASTM E1706–00). Annual Book of ASTM Standards Volume 11.05. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  • Burgess RM, McKinney RA (1999) Importance of interstitial, overlying water and whole sediment exposures to bioaccumulation by marine bivalves. Environ Pollut 104:373–382

    Article  CAS  Google Scholar 

  • Carter DE, Aposhian HV, Gandolfi AJ (2003) The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicological review. Toxicol Appl Pharmacol 193:309–334

    Article  CAS  Google Scholar 

  • Caussy D (2003) Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicol Environ Safe 56:164–173

    Article  CAS  Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • Conrad AU, Comber SD, Simkiss K (2000) New method for the assessment of contaminant uptake in the oligochaete Lumbriculus variegatus. Bull Environ Contam Toxicol 65:16–21

    Article  CAS  Google Scholar 

  • Davies NA, Taylor MG, Simkiss K (1997) The influence of particle surface characteristics on pollutant metal uptake by cells. Environ Pollut 96:179–184

    Article  CAS  Google Scholar 

  • Dawson TD, Lott KG, Leonard EN, Mount DR (2003) Time course of metal loss in Lumbriculus variegatus following sediment exposure. Environ Toxicol Chem 22:886–889

    CAS  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat, versión 2008, Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Fattorini D, Regoli F (2004) Arsenic speciation in tissues of the Mediterranean polychaete Sabella spallanzanii. Environ Toxicol Chem 23:1881–1887

    Article  CAS  Google Scholar 

  • Fattorini D, Notti A, Halt MN, Gambi MC, Regoli F (2005) Levels and chemical speciation of arsenic in polychaetes: a review. Mar Ecol 26:255–264

    Article  CAS  Google Scholar 

  • Haitzer M, Höss S, Traunspurger W, Steinberg C (1998) Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms – a review. Chemosphere 37:1335–1362

    Article  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  Google Scholar 

  • Karadjova IB, Slaveykova VI, Tsalev DL (2008) The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater. Aquat Toxicol 87:264–271

    Article  CAS  Google Scholar 

  • Koopal LK, van Riemsdijk WH, Kinniburgh DG (2001) Humic matter and contaminants. General aspects and modeling metal ion binding. Pure Appl Chem 73:2005–2016

    Article  CAS  Google Scholar 

  • Landrum PF, Robbins JA (1990) Bioavailability of sediment-associated contaminants to benthic invertebrates. In: Baudo R, Giesy JP, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis, Chelsea, pp 237–263

    Google Scholar 

  • Leppänen MT, Kukkonen JVK (1998) Relationship between reproduction, sediment type, and feeding activity of Lumbriculus variegatus (Müller): implications for sediment toxicity testing. Environ Toxicol Chem 17:2196–2202

    Google Scholar 

  • Ley Nº 24051 (1992) Ley Nacional de Residuos Peligrosos: Normas para los Vertidos de Establecimientos Industriales o Especiales alcanzados por el Decreto 674/89, República Argentina

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Michel P, Chiffoleau JF, Averty B, Auger D, Chartier E (1999) High resolution profiles for arsenic in the Seine Estuary. Seasonal variations and net fluxes to the English Channel. Cont Shelf Res 19:2041–2061

    Article  Google Scholar 

  • Millward GE, Kitts HJ, Ebdon L, Allen JI, Morris AW (1997) Arsenic species in the Humber Plume. UK Cont Shelf Res 17:435–454

    Article  Google Scholar 

  • Mount DR, Dawson TD, Burkhar LP (1999) Implications of gut purging for tissue residues determined in bioaccumulation testing of sediment with Lumbriculus variegatus. Environ Toxicol Chem 18:1244–1249

    CAS  Google Scholar 

  • Mount DR, Highland TL, Mattson VR, Dawson YD, Lott KG, Ingersoll CG (2006) Use of the oligochaete, Lumbriculus variegatus, as a prey organism for toxicant exposure of fish through the diet. Environ Toxicol Chem 25:2760–2767

    Article  CAS  Google Scholar 

  • Nice AI, Lung WS, Riedel GF (2008) Modeling arsenic in the Patuxent estuary. Environ Sci Technol 42:4804–4810

    Article  CAS  Google Scholar 

  • Norwood WP, Borgmann U, Dixon DG (2007) Chronic toxicity of arsenic, cobalt, chromium and manganese to Hyalella azteca in relation to exposure and bioaccumulation. Environ Pollut 147:262–272

    Article  CAS  Google Scholar 

  • Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabelle spallanzanii: Experimental observations. Environ Toxicol Chem 26:1186–1191

    Article  CAS  Google Scholar 

  • Pawlik-Skowrónska B, Pirszel J, Kalinowska R, Skowroński T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70:201–212

    Article  Google Scholar 

  • Pedlar RM, Klaverkamp JF (2002) Accumulation and distribution of dietary arsenic in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 57:153–166

    Article  CAS  Google Scholar 

  • Schulten HR, Plague B, Schnitzer MA (1991) A chemical structure for humic substances. Naturwissenschaften 78:311–312

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  Google Scholar 

  • Simkiss K, Edwards PA, Lawrence MAM, Davies NA, Taylor MG (2000) The use of hydrophobic resins as analogues for sediment testing. Environ Sci Technol 34:2388–2392

    Article  CAS  Google Scholar 

  • Simkiss K, Davies NA, Edwards PA, Lawrence MAM, Taylor MG (2001) The use of sediment analogues to study the uptake of pollutants by chironomid larvae. Environ Pollut 115:89–96

    Article  CAS  Google Scholar 

  • Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd ed. EPA/600/R-99/064. USEPA, Washington, DC

    Google Scholar 

  • Verrengia Guerrero NR (1995) Contaminantes metálicos en el Río de La Plata: Monitoreo del sistema acuático y estudio de algunos efectos tóxicos en moluscos bivalvos por medio de bioensayos. Doctoral thesis, University of Buenos Aires, Buenos Aires, Argentina

  • Verrengia Guerrero NR (2007) Predicting the uptake and bioaccumulation of organic pollutants from natural sediments. In: Plattenberg RH (ed) Environmental pollution: new research. Nova Science, New York, NY, pp 141–184

    Google Scholar 

  • Verrengia Guerrero NR, Nahabedian DE, Wider EA (2000) Analysis of some factors that may modify the bioavailability of cadmium and lead by Biomphalaria glabrata. Environ Toxicol Chem 19:2779–2787

    Article  Google Scholar 

  • Verrengia Guerrero NR, Taylor MG, Wider EA, Simkiss K (2001) Modeling pentachlorophenol (PCP) bioavailability and bioaccumulation by the freshwater fingernail clam Sphaerium corneum using artificial particles and humic acids. Environ Toxicol Chem 20:2910–2915

    Article  CAS  Google Scholar 

  • Verrengia Guerrero NR, Taylor MG, Wider EA, Simkiss K (2003) Influence of particle characteristics and organic matter content on the bioavailability and bioaccumulation of pyrene by clams. Environm Pollut 121:115–122

    Article  CAS  Google Scholar 

  • Verrengia Guerrero NR, Taylor MG, Simkiss K (2007) Modelling 2,4-dichlorophenol bioavailability and bioaccumulation by the freshwater fingernail clam Sphaerium corneum using artificial particles and humic acids. Environ Pollut 145:238–244

    Article  CAS  Google Scholar 

  • Ward JE, Levinton JS, Shumway SE, Cucci T (1998) Site of particle selection in a bivalve mollusk. Nature 390:131–132

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant No. X-233 from the University of Buenos Aires. We also thank Valot S.A. for providing some materials and INTEMIN-SEGEMAR, Argentina, for collaborating with arsenic determinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí R. Verrengia Guerrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasi, M., Piol, M.N., Di Risio, C. et al. Investigating Arsenic Bioavailability and Bioaccumulation by the Freshwater Oligochaete Lumbriculus variegatus . Arch Environ Contam Toxicol 61, 426–434 (2011). https://doi.org/10.1007/s00244-010-9639-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-010-9639-6

Keywords

Navigation