Skip to main content

Advertisement

Log in

Lead Concentrations in Zooplankton, Water, and Particulate Matter of a Southwestern Atlantic Temperate Estuary (Argentina)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study presents for the first time valuable results of lead (Pb) accumulation in zooplankton from a southwestern Atlantic temperate estuary, the Bahía Blanca estuary, one of the most important and industrialized coastal environments of Argentina. It considers Pb concentrations in zooplankton organisms as well as in the dissolved and particulate phases. These fractions were analyzed on account of their important role in the biogeochemical cycles of trace elements in estuarine environments. In addition, the major physicochemical variables, i.e., nutrients, and pigment concentrations, and zooplankton composition and abundance, were also considered to understand Pb levels in the above-mentioned fractions. Samplings were performed from March to December 2005 with a bimonthly frequency and comprised a study area with stations located near industrial settlements and other stations a few kilometers far from these points. The results of the physicochemical variables and nutrients and pigments agreed with historic values for the estuary and did not present any evidence of abnormalities. Dissolved Pb presented a mean concentration of 2.15 ± 0.46 μg L−1, whereas particulate Pb presented a mean concentration of 13.52 ± 3.07 μg g−1 dry weight (dw). In the mesozooplankton, represented by copepods, the mean concentration was similar to the particulate fraction (13.38 ± 4.41 μg g−1 dw), whereas in the macrozooplankton, represented by mysids, it was lower (9.81 ± 1.89 μg g−1 dw). Thus, Pb concentrations were relatively high in the dissolved and particulate phases. Moreover, zooplankton accumulated important concentrations of this metal, which was mainly incorporated through suspended particulate matter (SPM). The source of Pb in all of these fractions is related to the industry discharges as well domestic sewage located near the sampling stations. Finally, through these results, it was possible to show the importance of zooplankton and SPM in the biogeochemical cycle of Pb as well as the interaction between these fractions in an estuarine and anthropogenic environment, such as the Bahía Blanca estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberts JJ, Giesy JP, Evans DW (1984) Distribution of dissolved organic carbon and metal-binding capacity among ultrafilterable fractions isolated from selected surface waters of the Southeastern United States. Environ Geol Water Sci 6:91–101

    Article  CAS  Google Scholar 

  • American Public Health Association–American Water Works Association–Water Pollution Control Federation (1998) Standard methods for the examination of water and wastewater. APHA, Washington, DC

    Google Scholar 

  • Amiard JC, Amiard-Triquet C, Metayer C, Marchand J (1980) Estude du transfert de Cd, Pb, Cu et Zn dans les chaînes trophiques néritiques et estuariennes. I. Etat dans I’estuaire de la Loire (France) au tours de I’eté 1978. Water Res 14:665–673

    Article  CAS  Google Scholar 

  • Andrade JS (2001) Metales pesados en el agua de la zona interna de Bahía Blanca, y su toxicidad sobre algunas especies fitoplanctónicas. Doctoral thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina

  • Aualiitia TU, Pickering WF (1987) The specific sorption of trace amounts of Cu, Pb and Cd by inorganic particulates. Water Air Soil Poll 35:171–185

    Article  CAS  Google Scholar 

  • Balls RW (1989) The partition of trace metals between dissolved and particulate phases in European coastal waters: a compilation of field data and comparison with laboratory studies. J Sea Res 23:7–14

    Article  CAS  Google Scholar 

  • Barwick M, Maher W (2003) Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquire Estuary, NSW. Australia. Mar Environ Res 56:471–502

    Article  CAS  Google Scholar 

  • Bibby RL, Webster-Brown JG (2006) Trace metal adsorption onto urban stream suspended particulate matter (Auckland region, New Zealand). Appl Geochem 21:1135–1151

    Article  CAS  Google Scholar 

  • Botté SE (2005) El rol de la vegetación en el ciclo biogeoquímico de los metales pesados en humedales del estuario de Bahía Blanca. Doctoral thesis, Universidad Nacional del Sur

  • Botté SE, Freije RH, Marcovecchio JE (2007) Dissolved heavy metal (Cd, Pb, Cr, Ni) concentrations in surface water and porewater from Bahía Blanca estuary tidal flats. B Environ Contam Tox 79:415–421

    Article  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdon estuaries: a review. Environ Pollut 76:31–89

    Article  Google Scholar 

  • Cardelli NV, Cervellini PM, Piccolo MC (2006) Abundancia estacional y distribución espacial de Mysidacea en el Atlántico sudoccidental, estuario de Bahía Blanca. Rev Biol Mar Oceanogr 41:177–185

    Article  Google Scholar 

  • Clark RB (2001) Marine pollution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Clarke J (1998) Evaluation of censored data methods to allow statistical comparisons among very small samples with below detection limit observations. Environ Sci Technol 32:177–183

    Article  CAS  Google Scholar 

  • Cuong DT, Karuppiah S, Obbard JP (2008) Distribution of heavy metals in the dissolved and suspended phase of the sea-surface microlayer, seawater column and in sediments of Singapore’s coastal environment. Environ Monit Assess 138:255–272

    Article  CAS  Google Scholar 

  • Dean CM, Sansalone JJ, Cartledge FK, Pardue JH (2005) Influence of hydrology on rainfall-runoff metal element speciation. J Environ Eng 131:632–642

    Article  CAS  Google Scholar 

  • Eberlein K, Kattner G (1987) Automatic method for the determination of orthophosphate and total dissolved phosphorus in the marine environment. Anal Chem 326:354–357

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet FPH, Huang WW, Martin JM (1984) Lead cycling in estuaries, illustrated by the Gironde Estuary, France. Nature 308:409–414

    Article  CAS  Google Scholar 

  • El-Moselhy KM, Gabal MN (2004) Trace metals in water, sediments and marine organisms from the northern part of the Gulf of Suez, Red Sea. J Marine Syst 46:39–46

    Article  Google Scholar 

  • Everaarts JM, Heesters R, Fisher CV (1993) Heavy metals (Cu, Zn, Pb, Cd) in sediment, zooplankton and epibenthic invertebrates from the area of the continental slope of the Banc d’ Arguin (Mauretania). Hydrobiologia 258:41–58

    Article  CAS  Google Scholar 

  • Fang TH, Hwang JS, Hsiao SH, Chen HY (2006) Trace metals in seawater and copepods in the ocean outfall area off the northern Taiwan coast. Mar Environ Res 61:224–243

    Article  CAS  Google Scholar 

  • Fernández-Severini MD, Botté SE, Hoffmeyer MS, Marcovecchio JE (2009) Spatial and temporal distribution of cadmium and copper in water and zooplankton in the Bahia Blanca estuary, Argentina. Estuar Coast Shelf Sci 85:57–66

    Article  Google Scholar 

  • Ferrer L, Contardi E, Andrade S, Asteasuain R, Pucci AE, Marcovecchio JE (2000) Environmental cadmium and lead concentrations in the Bahía Blanca Estuary (Argentina): potential toxic effects of Cd and Pb on crab larvae. Oceanologia 43:493–504

    Google Scholar 

  • Ferrer LD, Andrade JS, Contardi ET, Asteasuain RO, Marcovecchio JE (2003) Copper and zinc concentrations in Bahía Blanca Estuary (Argentina) and their acute lethal effects on larvae of the crab Chasmagnathus granulata. Chem Spec Bioavailab 15:1–7

    Article  Google Scholar 

  • Fisher NS (1985) Accumulation of metals by marine phytoplankton. Mar Biol 87:137–142

    Article  CAS  Google Scholar 

  • Fisher NS, Reinfelder JR (1995) The trophic transfer of metals in marine systems. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, UK, pp 363–406

    Google Scholar 

  • Freije RH, Gayoso AM (1988) Producción primaria del estuario de Bahía Blanca. Informes UNESCO, Ciencias del Mar 47:112–114

    Google Scholar 

  • Freije RH, Spetter CV, Marcovecchio JE, Popovich CA, Botté SE, Negrín V et al (2008) Water chemistry and nutrients of the Bahía Blanca estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisboa, Spain, pp 241–253

    Google Scholar 

  • Gavriil AM, Angelidis MO (2005) Metal and organic carbon distribution in water column of a shallow enclosed Bay at the Aegean Sea Archipelago: Kalloni Bay, island of Lesvos, Greece. Estuar Coast Shelf S 64:200–210

    Article  CAS  Google Scholar 

  • Hart BT (1982) Uptake of trace metals by sediments and suspended particulates: a review. Hydrobiologia 91:299–313

    Google Scholar 

  • Hatje V, Birch GF, Hill DM (2001) Spatial and temporal variability of particulate trace metals in Port Jackson Estuary, Australia. Estuar Coast Shelf Sci 53:63–77

    Article  CAS  Google Scholar 

  • Hoffmeyer MS (1994) Seasonal succession of Copepoda in the Bahía Blanca estuary. Hydrobiologia 292(293):303–308

    Article  Google Scholar 

  • Hoffmeyer MS (2004a) Mesozooplancton. In: Piccolo MC, Hoffmeyer MS (eds) Ecosistema del estuario de Bahía Blanca. Instituto Argentino de Oceanografía (IADO-CONICET), Bahía Blanca, pp 133–141

    Google Scholar 

  • Hoffmeyer MS (2004b) Decadal change in zooplankton seasonal succession in the Bahía Blanca estuary, Argentina, following introduction of two zooplankton species. J Plankton Res 26:181–189

    Article  Google Scholar 

  • Hoffmeyer MS, Mianzan H (2004) Macro-zooplancton del estuario y aguas costeras adyacentes. In: Piccolo MC, Hoffmeyer MS (eds) Ecosistema del Estuario de Bahía Blanca. Instituto Argentino de Oceanografía (IADO-CONICET), Bahía Blanca, pp 143–151

    Google Scholar 

  • Hoffmeyer MS, Pettigrosso RE, Fulko K, Biancalana F, Fernández-Severini MD, Menéndez MC, Berasategui AA et al (2008) Informe Final. Enero-Diciembre 2007. Convenio específico MBB—UNS. Programa de monitoreo de la calidad ambiental de la zona interior del estuario de Bahía Blanca. Anexo III: Estudio del fitoplancton, micro, meso y macrozooplancton

  • Huang YB, Wang WH, Peng A (2000) Accumulation of Cu(II) and Pb(II) by biofilms grown on particulate in aquatic systems. Environ Sci Health 3:575–592

    Article  Google Scholar 

  • Kahle J, Zauke GP (2003) Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere 51:409–417

    Article  CAS  Google Scholar 

  • Kehrig HA, Palermo EFA, Seixas TG, Branco CWC, Moreira I, Malm O (2009) Trophic transfer of methylmercury and trace elements by tropical estuarine seston and plankton. Estuar Coast Shelf Sci 85:36–44

    Article  CAS  Google Scholar 

  • Koirtyohann SR, Wen JW (1973) Critical study of the APDC-MIBK extraction system for atomic absorption. Anal Chem 45:1986–1989

    Article  CAS  Google Scholar 

  • Lorenzen CJ, Jeffrey SW (1980) Determination of chlorophyll in seawater. UNESCO Tech Paper Mar Sci 35:1–20

    Google Scholar 

  • Luoma SN, van Geen A, Lee BG, Cloern JE (1998) Metal uptake by phytoplankton during a bloom in South San Francisco Bay: implications for metal cycling in estuaries. Limnol Oceanogr 43:1007–1016

    Article  CAS  Google Scholar 

  • Marcovecchio JE, Ferrer L (2005) Distribution and geochemical partitioning of heavy metals in sediments of the Bahía Blanca estuary, Argentina. J Coastal Res 21:826–834

    Article  Google Scholar 

  • Marcovecchio JE, Freije RH (2004) Efectos de la intervención antrópica sobre sistemas marinos costeros: El estuario de Bahía Blanca. Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales 56:115–132

    Google Scholar 

  • Marcovecchio JE, Asteasuain RO, Botté SE, Contardi E, Chiarello MN, Freije RH (2003) Programa de Monitoreo de la Calidad Ambiental de la Zona Interior del Estuario de Bahía Blanca. Informe Final, Bahía Blanca, Argentina

    Google Scholar 

  • Marcovecchio JE, Botté S, Delucchi F, Arias A, Fernández-Severini M, De marco S et al (2008) Pollution processes in Bahía Blanca estuarine environment. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisboa, Spain, pp 303–316

    Google Scholar 

  • Martino M, Turner A, Nimmo M, Millward GE (2002) Resuspension, reactivity and recycling of trace metals in the Mersey Estuary, UK. Mar Chem 77:171–186

    Article  CAS  Google Scholar 

  • Masson M, Blanc G, Schäfer J (2006) Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) fluxes into the Gironde Estuary via its major tributaries. Sci Total Environ 370:133–146

    Article  CAS  Google Scholar 

  • Miramand P, Guyot T, Rybarczyk H, Elkaïm B, Mouny P, Dauvin JC et al (2001) Contamination of the biological compartment in the Seine estuary by Cd, Cu, Pb, and Zn. Estuaries 24:1056–1065

    Article  CAS  Google Scholar 

  • Muller B, Sigg L (1990) Interaction of trace metals with natural particle surfaces: comparison between adsorption experiments and field measurements. Aquat Sci 52:75–92

    Article  Google Scholar 

  • Nguyen HL, Leermakers M, Elskens M, De Ridder F, Doan TH, Baeyens W (2005) Correlations, partitioning and bioaccumulation of heavy metals between different compartments of Lake Balaton. Sci Total Environ 341:211–226

    Article  CAS  Google Scholar 

  • Omori M, Ikeda T (1984) Methods in marine zooplankton ecology. Wiley, New York, NY

    Google Scholar 

  • Pempkowiak J, Walkusz-Miotk J, Beldowski J, Walkusz W (2006) Heavy metals in zooplankton from the Southern Baltic. Chemosphere 62:1697–1708

    Article  CAS  Google Scholar 

  • Perillo GME, Piccolo MC (1999) Geomorphological and physical characteristics of the Bahía Blanca Estuary, Argentina. In: Perillo GME, Piccolo MC, Pino-Quiriva M (eds) Estuaries of South America. Their geomorphology and dynamics. Springer-Verlag, Berlin, Germany, pp 195–216

    Google Scholar 

  • Pettigrosso RE, Barria de Cao MS, Popovich CA (1997) Planktonic ciliates during diatom bloom in Bahia Blanca estuary, Argentina. I. Aloricated ciliates. Oebalia 23:3–19

    Google Scholar 

  • Piccolo MC, Perillo GME, Melo WD (2008) The Bahía Blanca estuary: an integrated overview of its geomorphology and dynamics. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisboa, Spain, pp 219–229

    Google Scholar 

  • Popovich CA, Marcovecchio JE (2008) Spatial and temporal variability of phytoplankton and environmental factors in a temperate estuary of South America (Atlantic coast, Argentina). Cont Shelf Res 28:236–244

    Article  Google Scholar 

  • Popovich CA, Spetter CV, Marcovecchio JE, Freije RH (2008) Dissolved nutrients availability during winter diatom bloom in a turbid and shallow estuary, (Bahía Blanca, Argentina). J Coastal Res 24:95–102

    Article  CAS  Google Scholar 

  • Rainbow PS (1993) The significance of trace metals concentrations in marine invertebrates. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals in invertebrates. Lewis, Boca Ratón, FL, pp 3–23

    Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang WX (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135

    Article  CAS  Google Scholar 

  • Rossi N, Jamet JL (2008) In situ heavy metals (cooper, lead and cadmium) in different plankton compartments and suspended particulate matter in two coupled Mediterranean coastal ecosystem (Toulon Bay, France). Mar Pollut Bull 56:1862–1870

    Article  CAS  Google Scholar 

  • Sadiq M (1992) Toxic metal chemistry in marine environments. Marcel Dekker, New York, NY

    Google Scholar 

  • Scarlato N, Gerpe M, Marcovecchio JE (1993) Trace metal levels relationship between suspended particulate matter and zooplankton from a coastal ecosystem of Argentina. Perspect Environ Geochem Trop Countries 1:421–424

    Google Scholar 

  • Scarlato N, Marcovecchio JE, Pucci AE (1997) Heavy metal distribution in zooplankton from Buenos Aires coastal waters (Argentina). Chem Spec Bioavailab 9:1–6

    Google Scholar 

  • Schulz-Baldes M (1992) Baseline study on Cd, Cu and Pb concentrations in Atlantic neuston organisms. Mar Biol 112:211–222

    Article  CAS  Google Scholar 

  • Soto-Jiménez MF, Páez-Osuna F, Scelfo G, Hibdon S, Franks R, Aggarawl J et al (2008) Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: a study of concentrations and isotopic composition. Mar Environ Res 66:451–458

    Article  Google Scholar 

  • Spetter CV (2006) Ciclo biogeoquímico de nutrientes inorgánicos de nitrógeno en los humedales del estuario de Bahía Blanca. Doctoral thesis, Universidad Nacional del Sur

  • Strikland JHD, Parsons TR (1968) A practical handbook of seawater analysis. In: Stevenson JC (ed) Fisheries Research Board of Canada, Ottawa. Bulletin 167

  • Technicon Autoanalyzer II (1973) Silicates in water and seawater. Industrial Method No. 186–72 W/B

  • Treguer P, Le Corre P (1975) Manuel D’Analyse des Sels Nutritifs Dans L’Eau de Mer (utilización de I’Autoanalyzer II Technicon), France

  • Tueros I, Rodríguez JG, Borja A, Solauna O, Valencia V, Millán E (2008) Dissolved metal background levels in marine waters, for the assessment of the physico-chemical status, within the European Water Framework Directive. Sci Total Environ 407:40–52

    Article  CAS  Google Scholar 

  • Turner A, Millward GE (2002) Suspended particles: their role in estuarine biogeochemical cycles. Estuar Coast Shelf Sci 55:857–883

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2002) National Recommended Water Quality Criteria. EPA-822-R-02-047, Office of Science and Technology

  • Vicente-Martorell JJ, Galindo-Riaño MD, García-Vargas M, Granado-Castro MD (2009) Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. J Hazard Mater 162:823–836

    Article  CAS  Google Scholar 

  • Villa N (1988) Spatial distribution of heavy metals in seawater and sediments from coastal areas of the Southeastern Buenos Aires Province, Argentina. In: Seeliger U, de Lacerda LD, Patchineelam SR (eds) Metals in coastal environments of Latin America. Springer-Verlag, Heidelberg, Germany, pp 33–44

    Google Scholar 

  • Villa N, Pucci AE (1987) Seasonal and spatial distribution of copper, cadmium and zinc in the seawater of Blanca Bay. Estuar Coast Shelf Sci 25:67–80

    Article  CAS  Google Scholar 

  • Waeles M, Riso RD, Le Corre P (2007) Distribution and seasonal changes of lead in an estuarine system affected by agricultural practices: the Penze estuary, NW France. Estuar Coast Shelf Sci 74:570–578

    Article  Google Scholar 

  • Waeles M, Riso RD, Maguer JF, Guillaud JF, Le Corre P (2008) On the distribution of dissolved lead in the Loire estuary and the North Biscay continental shelf, France. J Mar Syst 7:358–365

    Article  Google Scholar 

  • Wang WX, Fisher NS (1999) Delineating metal accumulation pathways for marine invertebrates. Sci Total Environ 237(238):459–472

    Article  Google Scholar 

  • Zar JH (1999) Bioestatistical analysis, 4th edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Zauke GP, Schmalenbach I (2006) Heavy metals in zooplankton and decapod crustaceans from the Barents Sea. Sci Total Environ 359:283–294

    Article  CAS  Google Scholar 

  • Zauke GP, Krause M, Weber A (1996) Trace metals in mesozooplankton of the North Sea: Concentrations in different taxa and preliminary results on bioaccumulation in copepod collectives: (Calanus finmarchicus/C. helgolandicus). Internationale Revue der gesamten Hydrobiologie und Hydrographie 81:41–60

    Article  Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China―weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  • Zhou JL, Liu YP, Abrahams PW (2003) Trace metal behaviour in the Conwy estuary, North Wales. Chemosphere 51:429–440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. Nedda Chiarello and Raúl Asteasuain for valuable help in the laboratory analyses. This study was supported by a grant funded by the National Council of Scientific and Technological Researches (CONICET—Argentina) and was a part of the doctoral thesis of M. D. Fernández Severini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melisa Daiana Fernández Severini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández Severini, M.D., Botté, S.E., Hoffmeyer, M.S. et al. Lead Concentrations in Zooplankton, Water, and Particulate Matter of a Southwestern Atlantic Temperate Estuary (Argentina). Arch Environ Contam Toxicol 61, 243–260 (2011). https://doi.org/10.1007/s00244-010-9613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-010-9613-3

Keywords

Navigation