Skip to main content

Advertisement

Log in

Role of Protein Kinase C in TBT-Induced Inhibition of Lytic Function and MAPK Activation in Human Natural Killer Cells

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml), indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraha AB, Whalen MM (2009) The role of p44/42 activation in tributyltin-induced inhibition of human natural killer cells: effects of MEK inhibitors. J Appl Toxicol 29:165–173

    Article  CAS  Google Scholar 

  • Aluoch AO, Whalen MM (2005) Tributyltin-induced effects on MAP kinases p38 and p44/42 in human natural killer cells. Toxicology 209:263–277

    Article  CAS  Google Scholar 

  • Aluoch AO, Odman-Ghazi SO, Whalen MM (2006) Alteration of an essential NK cell signaling pathway by low doses of tributyltin in human natural killer cells. Toxicology 224:229–237

    Article  CAS  Google Scholar 

  • Aluoch AO, Odman-Ghazi SO, Whalen MM (2007) Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells. Arch Toxicol 81:271–277

    Article  CAS  Google Scholar 

  • Baaijens PA (1986) Health effect screening and biological monitoring for workers in organotin industries. Toxicology analytics of the tributyltins: the present F status. In: Proceedings of the ORTEPA workshop Berlin, 15–16 May, ORTEP-Association, Vlissingen-Oost, The Netherlands, pp 191–208

  • Biron CA, Byron KS, Sullivan JL (1989) Severe herpes virus in an adolescent without natural killer cells. New Engl J Med 320:1731–1735

    Article  CAS  Google Scholar 

  • Chuang SS, Lee JK, Mathew PA (2003) Protein kinase C is involved in 2B4 (CD244)-mediated cytotoxicity and AP-1 activation in natural killer cells. Immunology 109:432–439

    Article  CAS  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    Article  CAS  Google Scholar 

  • Corsini E, Bruccoleri A, Marinovich M, Galli CL (1996) Endogenous Interleukin-1 alpha associated with skin irritation induced by tributyltin. Toxicol Appl Pharmacol 138:268–274

    Article  CAS  Google Scholar 

  • Derijard B, Raingeaud J, Barrett T, Wu IH, Han J, Ulevitch RJ, Davis RJ (1995) Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–685

    Article  CAS  Google Scholar 

  • Dudimah FD, Odman-Ghazi SO, Hatcher F, Whalen MM (2007) Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decrease in NK function. J Appl Toxicol 27:86–94

    Article  CAS  Google Scholar 

  • Dudimah FD, Griffey D, Wang X, Whalen MM (2010) Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function. Cell Biol Toxicol (in press)

  • Fleisher G, Koven N, Kamiya H, Henle W (1982) A non-X-linked syndrome with susceptibility to severe Epstein–Barr virus infections. J Pediatr 100:727–730

    Article  CAS  Google Scholar 

  • Graves SS, Bramhall J, Bonavida B (1986) Studies on the lethal hit stage of natural killer cells mediated cytotoxicity. I. Both phorbol ester and ionophore are required for release of natural killer cytotoxic factors (NKCF), suggesting a role for protein kinase C activity. J Immunol 137:1977–1984

    CAS  Google Scholar 

  • Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ (1996) Characterization of the structure and function of a novel MAP kinase kinase (MKK6). J Biol Chem 271:2886–2891

    Article  CAS  Google Scholar 

  • Jevremovic D, Billadeau DD, Schoon RA, Dick CJ, Leibson PJ (2001) Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2. J Immunol 166:7219–7228

    CAS  Google Scholar 

  • Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, Djeu JY (2000) Pivotal role of phoshoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 1:419–425

    Article  CAS  Google Scholar 

  • Kannan K, Falandyz J (1997) Butyltin residues in sediment, fish, fish-eating birds, harbour porpoise and human tissues from the Polish coast of the Baltic Sea. Mar Pollut Bull 34:203–207

    Article  CAS  Google Scholar 

  • Kannan K, Tanabe S, Tatsukawa R (1995a) Occurrence of butyltin residues in certain foodstuffs. Bull Environ Contam Toxicol 55:510–516

    Article  CAS  Google Scholar 

  • Kannan K, Tanabe S, Tatsukawa R, Williams RJ (1995b) Butyltin residues in fish from Australia, Papua New Guinea and the Solomon Islands. Int J Environ Anal Chem 61:263–273

    Article  CAS  Google Scholar 

  • Kannan K, Tanabe S, Iwata H, Atsukawa R (1995c) Butyltins in muscle and liver of fish collected from certain Asian and Oceanian countries. Environ Pollut 90:279–290

    Article  CAS  Google Scholar 

  • Kannan K, Villeneuve DL, Blankenship AL, Giesy JP (1998) Interaction of tributyltin with 3,3′,4,4′,5-pentachlorobiphenyl-induced ethoxyresorufin O-deethylase activity in rat hepatoma cells. J Toxicol Environ Health A 55:373–384

    Article  CAS  Google Scholar 

  • Kannan K, Senthilkumar K, Giesy JP (1999) Occurrence of butyltin compounds in human blood. Environ Sci Technol 33:1776–1779

    Article  CAS  Google Scholar 

  • Karpiak VC, Bridges RJ, Eyer CL (2001) Organotins disrupt components of glutamate homeostasis in rat astrocyte cultures. J Toxicol Environ Health A 63:273–287

    Article  CAS  Google Scholar 

  • Kimbrough RD (1976) Toxicity and health effects of selected organotins compounds: a review. Environ Health Perspect 14:51–56

    Article  CAS  Google Scholar 

  • Kupper TS (1989) Mechanism of cutaneous inflammation: interaction between epidermal cytokines, adhesion molecules and leukocytes. Arch Dermatol 125:1406–1412

    Article  CAS  Google Scholar 

  • Laughlin RB, Linden O (1985) Fate and effects of organotin compounds. Ambio 14:88–94

    CAS  Google Scholar 

  • Loganathan BG, Kannan K, Owen DA, Sajwan KS (2000) Butyltin compounds in freshwater ecosystems. In: Lipnick RL, Hermens J, Jones K, Muir D (eds) Persistent, bioaccumulative, and toxic chemicals. I fate and exposure, American Chemical Society Publication. Oxford University Press, London

    Google Scholar 

  • Moretta L, Biassoni R, Bottino C, Mingari MC, Moretta A (2002) Natural killer cells: a mystery no more. Scand J Immunol 55:229–232

    Article  CAS  Google Scholar 

  • Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665

    Article  CAS  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    CAS  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  CAS  Google Scholar 

  • Perussia B (2000) Signaling for cytotoxicity. Nat Immunol 1:372–374

    Article  CAS  Google Scholar 

  • Procopio ADG, Paolini R, Gismondi A, Picolli M, Adamo S, Cavallo G, Frati L, Santoni A (1989) Effects of protein kinase C (PK-C) activators and inhibitors on human large granular lymphocytes (LGL): role of PK-C on natural killer (NK) activity. Cell Immunol 118:470–481

    Article  CAS  Google Scholar 

  • Roper WL (1992) Toxicological profile for tin. U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, USA

    Google Scholar 

  • Rosse C, Linch M, Kermogant S, Cameron AJM, Boeckeler K, Parker PJ (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11:103–112

    Article  CAS  Google Scholar 

  • Snoeij NJ, Penninks AH, Seinen H (1987) Biological activity of organotin compounds: an overview. Environ Res 44:335–353

    Article  CAS  Google Scholar 

  • Steele TA, Brahmi Z (1988a) Phosphatidylinositol metabolism accompanies early activation events in tumor target cell-stimulated human natural killer cells. Cell Immunol 112:402–413

    Article  CAS  Google Scholar 

  • Steele TA, Brahmi Z (1988b) Inhibition of human natural killer cell activity by the protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine is an early but post-binding event. J Immunol 141:3164–3169

    CAS  Google Scholar 

  • Tajima K, Matsumoto N, Ohmori K, Wada H, Ito M, Suzuki K, Yamamoto K (2004) Augmentation of NK cell-mediated cytotoxicity to tumor cells by inhibitory NK cell receptor blockers. Int Immunol 16:385–393

    Article  CAS  Google Scholar 

  • Tanabe S, Prudente M, Mizuno T, Hasegawa J, Iwata H, Miyazaki N (1998) Butyltin contamination in marine mammals from north Pacific and Asian coastal waters. Environ Sci Technol 32:193–198

    Article  CAS  Google Scholar 

  • Ting AT, Karnitz LM, Schoon RA, Abraham R, Leibson PJ (1992a) Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-gamma 1 and PLC-gamma 2 in natural killer cells. J Exp Med 176:1751–1755

    Article  CAS  Google Scholar 

  • Ting AT, Schoon RA, Abraham RT, Leibson PJ (1992b) Interaction between protein kinase C-dependent and G protein dependent pathways in the regulation of natural killer cell granule exocytosis. J Biol Chem 267:3957

    Google Scholar 

  • Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D, Kirilovsky J (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771–15781

    CAS  Google Scholar 

  • Trakul N, Rosner MR (2005) Modulation of the MAP kinase signaling cascade by Raf kinase inhibitory protein. Cell Res 15:19–23

    Article  CAS  Google Scholar 

  • Trotta R, Puorro KA, Paroli M, Azzoni L, Abebe B, Eisenlohr LC, Perussia B (1998) Dependence of both spontaneous and antibody-dependent, granule exocytosis-mediated NK cell cytotoxicity on extracellular signal-related kinases. J Immunol 161:6648–6656

    CAS  Google Scholar 

  • Trotta R, Fettucciari K, Azzoni L, Abebe B, Puorro KA, Eisenlohr LC, Perussia B (2000) Differential role of p38 and c-Jun N-terminal kinase 1 mitogen-activated protein kinases in NK cell cytotoxicity. J Immunol 165:1782–1789

    CAS  Google Scholar 

  • Tsukazaki M, Satsu H, Mori A, Sugita-Konishi Y, Shimizu M (2004) Effects of tributyltin on barrier functions in human intestinal Caco-2 cells. Biochem Biophys Res Commun 315:991–997

    Article  CAS  Google Scholar 

  • Ueffing M, Lovric J, Philipp A, Mischak H, Kolch W (1997) Protein kinase C-epsilon associates with the Raf-1 kinase and induces the production of growth factors that stimulate Raf-1 activity. Oncogene 15:2921–2927

    Article  CAS  Google Scholar 

  • Vivier E, Nunès JA, Vely F (2004) Natural killer cell signaling pathways. Science 306:1517–1519

    Article  CAS  Google Scholar 

  • Wei S, Gilvery DL, Corliss BC, Sebti S, Sun J, Straus DB, Liebson PJ, Trapani JA, Hamilton AD, Weber MJ, Djeu JY (2000) Direct tumor lysis by NK cells uses a Ras-independent mitogen-activated protein kinase signal pathway. J Immunol 165:3811–3819

    CAS  Google Scholar 

  • Whalen MM, Doshi RN, Homma Y, Bankhurst AD (1993) Phospholipase C activation in the cytotoxic response of human natural killer cells requires protein-tyrosine kinase activity. Immunology 79:542–547

    CAS  Google Scholar 

  • Whalen MM, Loganathan BG, Kannan K (1999) Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res 81:108–116

    Article  CAS  Google Scholar 

  • Whalen MM, William TB, Green SA, Loganathan BG (2002a) Interleukins 2 and 12 produce recovery of cytotoxic function in tributyltin-exposed human natural killer cells. Environ Res 88:199–209

    Article  CAS  Google Scholar 

  • Whalen MM, Green SA, Loganathan BG (2002b) Brief butyltin exposure induces irreversible inhibition of the cytotoxic function on human natural killer cells, in vitro. Environ Res 88:19–29

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (1990) Tributyltin compounds. Environmental Health Criteria 116. WHO, Geneva

  • World Health Organization (WHO)/Food and Agriculture Organization of the United Nations (FAO) (1984) Data sheet on pesticides No. 65: bis(tributyltin) oxide. World Health Organization Geneva (VBC/PDS/DS/85.65)

  • Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156

    Article  CAS  Google Scholar 

  • Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO, Bolli R (2005) Role of the protein kinase C-epsilon-Raf-1-MEK-1/2–p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation 112:1971–1978

    Article  CAS  Google Scholar 

  • Yamada S, Fuji Y, Mikami E, Kawamura N, Hayakawa J (1993) Small-scale survey of organotin compounds in household commodities. J AOAC Int 76:436–441

    CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Grant 2S06GM-08092-34 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Whalen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraha, A.B., Rana, K. & Whalen, M.M. Role of Protein Kinase C in TBT-Induced Inhibition of Lytic Function and MAPK Activation in Human Natural Killer Cells. Arch Environ Contam Toxicol 59, 661–669 (2010). https://doi.org/10.1007/s00244-010-9520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-010-9520-7

Keywords

Navigation