Predicting the Bioavailability of Sediment-Associated Spiked Compounds by Using the Polyoxymethylene Passive Sampling and Tenax® Extraction Methods in Sediments from Three River Basins in Europe

  • Arto J. Sormunen
  • Anita I. Tuikka
  • Jarkko Akkanen
  • Matti T. Leppänen
  • Jussi V. K. Kukkonen


This study presents the bioavailability of four spiked compounds to Lumbriculus variegatus, in sediment samples from three river basins in Europe: the Elbe, the Llobregat, and the Scheldt. Twenty sediment samples differing in physical and chemical properties were spiked with chlorpyrifos, pyrene, tetrachloribiphenyl, and tetrabromo diphenyl ether. The main focus of this study was to compare the suitability of two chemical approaches—the rapidly desorbing fraction method based on the Tenax® extraction and the freely dissolved chemical concentration method based on polyoxymethylene passive sampling—for predicting the bioavailability of sediment-associated hydrophobic compounds. It appears that accessible concentration estimated by Tenax extraction does not result in equal freely dissolved concentrations based on polyoxymethylene passive sampling results. The present data show that freely dissolved concentration in pore water mainly determines the uptake by organisms and, therefore, the polyoxymethylene passive sampling method was a successful approach to estimating the bioavailability of sediment-associated lipophilic contaminants (log octanol–water partitioning coefficient >6). The sediment characteristics or river basin differences had only a minor effect on the bioavailability estimates. Overall, passive samplers have not been tested to a sufficient extent in various chemicals or exposure matrixes. For this reason, bioassays are still needed in the risk assessment process in order to verify results based on passive sampling methods.

Supplementary material

244_2009_9453_MOESM1_ESM.doc (35 kb)
(DOC 35 kb)


  1. Accardi-Dey A, Gschwend PM (2003) Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ Sci Technol 37:99–106CrossRefGoogle Scholar
  2. Barthe M, Pelletier E, Breedveld GD, Cornelissen G (2008) Passive samplers versus surfactant extraction for the evaluation of PAH availability in sediments with variable levels of contamination. Chemosphere 71:1486–1496CrossRefGoogle Scholar
  3. Booij K, Hoedemaker JR, Bakker J (2003) Dissolved PCBs, PAHs, and HCB in pore waters and overlying water of contaminated harbour sediments. Environ Sci Technol 37:4213–4220CrossRefGoogle Scholar
  4. Braekevelt E, Tittlemier SA, Tomy GT (2003) Direct measurement of octanol-water partition coefficient of some environmentally relevant brominated diphenyl ether congeners. Chemosphere 51:563–567CrossRefGoogle Scholar
  5. Bucheli TD, Gustafsson Ö (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34:5144–5151CrossRefGoogle Scholar
  6. Bucheli TD, Gustafsson Ö (2001) Ubiquitous observations of enhanced solid affinities for aromatic organochlorines in field situations: are in situ dissolved exposures overestimated by existing partitioning models? Environ Toxicol Chem 20:1450–1456CrossRefGoogle Scholar
  7. Bucheli TD, Gustafsson Ö (2003) Soot sorption of non-ortho and ortho substituted PCBs. Chemosphere 53:515–522CrossRefGoogle Scholar
  8. Cornelissen G, van Noort PCM, Govers HAJ (1997) Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with Tenax and effects of contact time and solute hydrophobicity. Environ Toxicol Chem 16:1351–1357CrossRefGoogle Scholar
  9. Cornelissen G, Rigterink H, ten Hulscher DEM, Vrind BA, van Noort PCM (2001) A simple tenax extraction method to determine the availability of sediment-sorbed organic compounds. Environ Toxicol Chem 20:706–711CrossRefGoogle Scholar
  10. Cornelissen G, Haftka J, Parsons J, Gustafsson Ö (2005) Sorption to black carbon of organic compounds with varying polarity and planarity. Environ Sci Technol 39:3688–3694Google Scholar
  11. Di Toro DM, Zarb SC, Hansen DJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583CrossRefGoogle Scholar
  12. Finnish Standards Association (1984) Water quality. Determination of the acute toxicity with waterflea, Daphnia magna Straus. Standard SFS 5062. Finnish Standards Association, Helsinki (in Finnish)Google Scholar
  13. Gobas FAPC, Zhang X, Wells R (1993) Gastrointestinal magnification: the mechanism of biomagnification and food chain accumulation of organic chemicals. Environ Sci Technol 27:2855–2863CrossRefGoogle Scholar
  14. Granier LK, Lafrance P, Campbell PGC (1999) An experimental design to probe the interactions of dissolved organic matter and xenobiotics: bioavailability of pyrene and 2′,2′,5′,5′-tetrachlorobiphenyl to Daphnia magna. Chemosphere 38:335–350CrossRefGoogle Scholar
  15. Gustafsson Ö, Hagheta F, Chan C, Macfarne J, Gschwend PM (1997) Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environ Sci Technol 31:203–209CrossRefGoogle Scholar
  16. Jantunen APK, Tuikka A, Akkanen J, Kukkonen JVK (2008) Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. Ecotoxicol Environ Safety 71:860–868CrossRefGoogle Scholar
  17. Jonker MT, Koelmans AA (2001) Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ Sci Technol 35:3742–3748CrossRefGoogle Scholar
  18. Jonker MT, Hoenderboom AM, Koelmans AA (2004) Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Environ Toxicol Chem 23:2563–2570CrossRefGoogle Scholar
  19. Kopinke F-D, Georgi A, MacKenzie K (2001) Sorption of pyrene to dissolved humic substances and related model polymers. 1. Structure–property correlation. Environ Sci Technol 35:2536–2542CrossRefGoogle Scholar
  20. Kraaij RH, Ciarell S, Tolls J, Kater BJ, Belfroid A (2001) Bioavailability of lab-contaminated and native polycyclic aromatic hydrocarbons to the amphipod Corophium volutator relates to chemical desorption. Environ Toxicol Chem 20:1716–1724Google Scholar
  21. Kraaij RH, Mayer P, Busser FJM, Van Het Bolscher M, Seinen W, Tolls J, Belfroid A (2003) Measured pore-water concentrations make equilibrium partitioning work: a data analysis. Environ Sci Technol 37:268–274CrossRefGoogle Scholar
  22. Kukkonen JVK, Landrum PF, Mitra S, Gossiaux DC, Gunnarson J, Weston D (2003) Sediment characteristics affecting desorption kinetics of select PAH and PCB congeners for seven laboratory spiked sediments. Environ Sci Technol 37:4656–4663CrossRefGoogle Scholar
  23. Kukkonen JVK, Landrum PF, Mitra S, Gossiaux DC, Gunnarsson J, Weston D (2004) The role of desorption for describing the bioavailability of select polycyclic aromatic hydrocarbon and polychlorinated biphenyl congeners for seven laboratory-spiked sediments. Environ Toxicol Chem 23:1842–1851CrossRefGoogle Scholar
  24. Kukkonen JVK, Mitra S, Landrum PF, Gossiaux DC, Gunnarson J, Weston D (2005) The contrasting roles of sedimentary plant-derived carbon and black carbon on sediment-spiked hydrophobic organic contaminant bioavailability to Diporea species and Lumbriculus variegatus. Environ Toxicol Chem 24:877–885CrossRefGoogle Scholar
  25. Landrum PF, Gossiaux DC, Kukkonen JVK (1997) Sediment characteristics influencing the bioavailability of nonpolar organic contaminants to Diporeia spp. Chem Spec Bioavail 9:43–55Google Scholar
  26. Leppänen MT, Kukkonen JVK (2004) Toxicokinetics of sediment-associated polybrominated diphenylethers (flame retardants) in benthic invertebrates (Lumbriculus variegatus, oligochaeta). Environ Toxicol Chem 23:166–172CrossRefGoogle Scholar
  27. Leppänen MT, Landrum PF, Kukkonen JVK, Greenberg MS, Burton AG, Robinson SD, Gossiaux DC (2003) Investigating to role of desorption on the bioavailability of sediment-associated 3,4,3′,4′-tetrachlorobiphenyl in benthic invertebrates. Environ Toxicol Chem 22:2861–2871CrossRefGoogle Scholar
  28. MacKay D, Shiu WY, Ma K-C, Lee SC (2006) Handbook of physical–chemical properties and environmental fate for organic chemicals, 2nd edn. Taylor & Francis, Boca Raton, FLGoogle Scholar
  29. Mayer LM, Chen Z, Findlay RH, Fang J, Sampson S, Self RF, Jumars PA, Quetel C, Donard OFX (1996) Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environ Sci Technol 30:2641–2645CrossRefGoogle Scholar
  30. Mayer P, Vaes WHJ, Winjker F, Legierse KCHM, Kraaij RH, Tolls J, Hermens JLM (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183CrossRefGoogle Scholar
  31. Mayer P, Fernqist MM, Cristensen PS, Karlson U, Trapp S (2007) Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions. Environ Sci Technol 41:6148–6155CrossRefGoogle Scholar
  32. Millward RN, Fleeger JW, Reible DD, Keteles KA, Cunningham BP, Zhang L (2001) Pyrene bioaccumulation, effects of pyrene exposure on particle-size selection, and fecal pyrene content in oligochaete Limnodrilus hoffmeisteri (Tubificidae, oligochaeta). Environ Toxicol Chem 20:1359–1366Google Scholar
  33. Mount DR, Dawson TD, Burkhard LP (1999) Implications of gut purging for tissue residues determined in bioaccumulation testing of sediment with Lumbriculus variegatus. Environ Toxicol Chem 18:1244–1249Google Scholar
  34. Oen AMP, Schaanning M, Ruus A, Cornelissen G, Källqivst T, Breedveld GD (2006) Predicting low biota to sediment accumulation factors of PAHs by using infinite-sink and equilibrium extraction methods as well as BC-inclusive modelling. Chemosphere 64:1412–1420CrossRefGoogle Scholar
  35. Parrish CC (1999) Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts MT, Wainmann BC (eds) Lipids in freshwater ecosystems. Springer, New York, pp 4–20Google Scholar
  36. Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11CrossRefGoogle Scholar
  37. Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contamintants in sediments and soils. Environ Toxicol Chem 25:1239–1245CrossRefGoogle Scholar
  38. Rockne KJ, Shor JM, Young LY, Taghon GL, Kosson DS (2002) Distributed sequestration and release of PAHs in weathered sediment: the role of sediment structure and organic carbon properties. Environ Sci Technol 36:2636–2644CrossRefGoogle Scholar
  39. Sormunen AJ, Leppänen MT, Kukkonen JVK (2008) Influence of sediment ingestion and exposure concentration on the bioavailable fraction of sediment-associated tetrachlorobiphenyl in Oligochaetes. Environ Toxicol Chem 27:854–863CrossRefGoogle Scholar
  40. ten Hulscher ThEM, Postma J, den Besten JP, Stroomberg GJ, Belfroid A, Wegener JW, Faber JH, van der Pol JJC, Hendriks JA, van Noort PC (2003) Tenax extraction mimics benthic and terrestrial bioavailability of organic compounds. Environ Toxicol Chem 22:2258–2265CrossRefGoogle Scholar
  41. ten Hulscher ThEM, Vrind BA, van Noort PC, Govers HAJ (2004) Temperature effects on very slow desorption of native chlorobenzenes from sediment water. Environ Toxicol Chem 23:1634–1639CrossRefGoogle Scholar
  42. van Hattum B, Leonards P, van Vliet S, Streck G, Korytar P, Kocan A, Brix R, Lopez de Alda M, van Liefferinge C, de Deckere E, Kukkonen J, Sormunen A (manuscript) Assessment and modelling of bioavailability and food web exposure in three European rivers: Scheldt, Elbe and LlobregatGoogle Scholar
  43. van Noort PCM, Cornelissen G, ten Hulscher DE, Belfroid A (2002) Influence of sorbate planarity on the magnitude of rapidly desorbing fractions of organic compounds in sediment. Environ Toxicol Chem 21:2326–2330CrossRefGoogle Scholar
  44. van Noort PC, Jonker MT, Koelmans AA (2004) Modelling maximum adsorption capacities of soot and soot-like materials for PAHs and PCBs. Environ Sci Technol 38:3305–3309CrossRefGoogle Scholar
  45. von der Ohe PC, Kühne R, Ebert R-U, Altenburger R, Liess M, Schüürmann G (2005) Structural alerts: a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. Chem Res Toxicol 18:536–555CrossRefGoogle Scholar
  46. Voparil IM, Burgess RM, Mayer LM, Tien R, Cantwell MG, Ryba S (2004) Digestive bioavailability to a deposit feeder (Arenicola marina) of polycyclic aromatic hydrocarbons associated with anthropognenic particles. Environ Toxicol Chem 23:2618–2626CrossRefGoogle Scholar
  47. Weber WJ, Kim SH, Johnson MD (2002) Distributed reactivity model for sorption by soils and sediments.15. High-concentration co-contaminant effects on phenanthrene sorption and desorption. Environ Sci Technol 36:3625–3634CrossRefGoogle Scholar
  48. Wells M, Wick L, Harms H (2004) Perspectives on modelling the release of hydrophobic organic contaminants drawn from model polymer release systems. J Mater Chem 14:2461–2472CrossRefGoogle Scholar
  49. Weston DP, Maruya KA (2002) Predicting bioavailability and bioaccumulation with in vitro digestive fluid extraction. Environ Toxicol Chem 21:962–971CrossRefGoogle Scholar
  50. Weston DP, Mayer LM (1998) In vitro digestive fluid extraction as a measure of the bioavailability of sediment-associated polycyclic aromatic hydrocarbons: sources of variation and implications for partitioning models. Environ Toxicol Chem 17:820–829CrossRefGoogle Scholar
  51. White JC, Pignatello JJ (1999) Influence of bisolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil. Environ Sci Technol 33:4292–4298CrossRefGoogle Scholar
  52. You J, Landrum PF, Lydy MJ (2006) Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ Sci Technol 40:6348–6353CrossRefGoogle Scholar
  53. You J, Landrum PF, Trimble TA, Lydy MJ (2007) Availability of polychlorinated biphenyls in field-contaminated sediments. Environ Toxicol Chem 26:1940–1948CrossRefGoogle Scholar
  54. Zhao D, Hunter M, Pignatello JJ, White JC (2002) Application of the dual-mode model for predicting competitive sorption equilibria and rates of polycyclic hydrocarbons in estuarine sediment suspensions. Environ Toxicol Chem 21:2276–2282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arto J. Sormunen
    • 1
  • Anita I. Tuikka
    • 1
  • Jarkko Akkanen
    • 1
  • Matti T. Leppänen
    • 1
  • Jussi V. K. Kukkonen
    • 1
  1. 1.Faculty of BiosciencesUniversity of JoensuuJoensuuFinland

Personalised recommendations