Skip to main content
Log in

Sorption of Estrogens onto Different Fractions of Sediment and Its Effect on Vitellogenin Expression in Male Japanese Medaka

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study investigated the sorption capacity of estrogenic compounds—such as estrone (E1), 17β-estradiol (E2), and 17α-ethynylestradiol (EE2)—of different sediment particle fractions. Two-sized fractions of sediment were used in the experiments, with a particle size <1 μm (mostly from 450 to 800 nm) and >1 μm up to 50 μm. Sorption kinetics were followed using a two-step reaction in which the major amount of chemicals was sorbed rapidly within minutes and then gradually increased until equilibrium was reached after 48 h. The sorption capacity of the fine particle fraction (particle size <1 μm) was shown to be significantly higher than that of the large fraction (1 μm < particle size < 50 μm). The sorption kinetics and isotherm were adequately predicted by using a pseudo second-order model and the Freundlich equation, respectively. Total organic carbon (TOC) content and surface area of particle fractions were also measured. Although the effects of TOC on the sorption of estrogens could not be verified, a higher surface area of fine particle fractions may significantly increase sorption capacity to target compounds. Sorption of estrogens onto sediment particles could be used to explain the differences of estrogenic activity of E2 spiked into different size fractions of particle suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ASTM-Standard (2003) D422-98: Standard test method for particle size analysis of soils. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Bettinetti R, Provini A (2002) Toxicity of 4-nonylphenol to Tubifex tubifex and Chironomus riparius in 28-day whole-sediment tests. Ecotoxicol Environ Saf 53:113–121

    Article  CAS  Google Scholar 

  • Bowman JC, Zhou JL, Readman JW (2002) Sediment–water interactions of natural oestrogens under estuarine conditions. Mar Chem 77:263–276

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Braga O, Smythe GA, Schafer AI, Feitz AJ (2005) Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environ Sci Technol 39:3351–3358

    Article  CAS  Google Scholar 

  • Braida WJ, White JC, Ferrandino FJ, Pignatello J (2001) Effect of solute concentration on sorption of polyaromatic hydrocarbons in soil: uptake rates. Environ Sci Technol 35:2765–2772

    Article  CAS  Google Scholar 

  • Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Bush B, Dzurica S, Wood L, Madrigal EC (1994) Sampling the Hudson River estuary for PCBs using multiplate artificial substrate samplers and congener-specific gas chromatography in 1991. Environ Toxicol Chem 13:1259–1272

    Article  CAS  Google Scholar 

  • Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT (2006) Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: a review. Chemosphere 65:1265–1280

    Article  CAS  Google Scholar 

  • Casey FM, Larsen GL, Hakk H, Simunek J (2003) Fate and transport of 17β-estradiol in soil-water systems. Environ Sci Technol 37:2400–2409

    Article  CAS  Google Scholar 

  • Casey FXM, Hakk H, Simunek J, Larsen GL (2004) Fate and transport of testosterone in agricultural soils. Environ Sci Technol 38:790–798

    Article  CAS  Google Scholar 

  • Conrad AU, Comber SD, Simkiss K (2002) Pyrene bioavailability: effect of sediment-chemical contact time on routes of uptake in an oligochaete worm. Chemosphere 49:447–454

    Article  CAS  Google Scholar 

  • Desbrow C, Routledge EJ, Brighty GC, Sumpter JP, Waldock M (1998) Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558

    Article  CAS  Google Scholar 

  • Folmar LC, Denslow ND, Rao V, Chow M, Crain D, Enblom J et al (1996) Vitellogenin induction and reduced serum testosterone concentration in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environ Health Perspect 104:1096–1100

    Article  CAS  Google Scholar 

  • García-Ortega S, Holliman PJ, Jones DL (2006) Toxicology and fate of Pestanal® and commercial propetamphos formulations in river and estuarine sediment. Sci Total Environ 366:826–836

    Article  Google Scholar 

  • Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res 31:1504–1512

    Article  CAS  Google Scholar 

  • Hirai N, Nanba A, Koshio M, Kondo T, Morita M, Tatarazako N (2006) Feminization of Japanese medaka (Oryzias latipes) exposed to 17β-estradiol: effect of exposure period on spawning performance in sex-transformed females. Aquat Toxicol 79:288–295

    Article  CAS  Google Scholar 

  • Huang W, Schlautman MA, Webe WJ (1996) A distributed reactivity model for sorption by soils and sediments. 5. The influence of near-surface characteristics in mineral domains. Environ Sci Technol 30:2993–3000

    Article  CAS  Google Scholar 

  • Hundal LS, Thompson ML, Laird DA, Carmo AM (2001) Sorption of phenanthrene by reference smectites. Environ Sci Technol 35:3456–3461

    Article  CAS  Google Scholar 

  • Isobe T, Serizawa S, Horiguchi T, Shibata Y, Managaki S, Takada H et al (2006) Horizontal distribution of steroid estrogens in surface sediments in Tokyo Bay. Environ Pollut 144:632–638

    Article  CAS  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241–248

    Article  CAS  Google Scholar 

  • Kjar J, Olsen P, Bach K, Barlebo HC, Ingerslev F, Hansen M et al (2007) Leaching of estrogenic hormones from manure-treated structured soils. Environ Sci Technol 41:3911–3917

    Article  Google Scholar 

  • Kolok AS, Snow DD, Kohno S, Sellin MK, Guillette LJ (2007) Occurrence and biological effect of exogenous steroids in the Elkhorn River, Nebraska, USA. Sci Total Environ 388:104–115

    Article  CAS  Google Scholar 

  • Kukkonen JVK, Landrum PF (1998) Effect of particle-xenobiotic contact time on bioavailability of sediment-associated benzo(a)pyrene to benthic amphipod, Diporeia spp. Aquat Toxicol 42:229–242

    Article  CAS  Google Scholar 

  • Kuster M, José López de Alda M, Barceló D (2004) Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. Trends Analyt Chem 23:790–798

    Article  CAS  Google Scholar 

  • Lai KM, Johnson KL, Scrimshaw MD, Lester JN (2000) Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ Sci Technol 34:3890–3894

    Article  CAS  Google Scholar 

  • Lai KM, Scrimshaw MD, Lester JN (2002) The effects of natural and synthetic steroid estrogens in relation to their environmental occurrence. Crit Rev Toxicol 32:113–132

    Article  CAS  Google Scholar 

  • Lee LS, Strock TJ, Sarmah AK, Rao PSC (2003) Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment. Environ Sci Technol 37:4098–4105

    Article  CAS  Google Scholar 

  • Metcalfe CD, Metcalfe TL, Kiparissis Y, Koenig BG, Khan C, Hughes RJ et al (2001) Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicol Chem 20:297–308

    CAS  Google Scholar 

  • Morrissey FA, Grismer ME (1999) Kinetics of volatile organic compound sorption/desorption on clay minerals. J Contam Hydrol 36:291–312

    Article  CAS  Google Scholar 

  • Murphy EM, Zachara JM, Smith SC (1990) Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol 24:1507–1516

    Article  CAS  Google Scholar 

  • Oh S-M, Choung S-Y, Sheen Y-Y, Chung K-H (2000) Quantitative assessment of estrogenic activity in the water environment of Korea by the E-SCREEN assay. Sci Total Environ 263:161–169

    Article  CAS  Google Scholar 

  • Olphen HV (1977) An introduction to clay colloid chemistry. Wiley-Interscience, New York, NY

    Google Scholar 

  • Peck M, Gibson RW, Kortenkamp A, Hill EM (2004) Sediments are major sinks of steroidal estrogens in two United Kingdom rivers. Environ Toxicol Chem 23:945–952

    Article  CAS  Google Scholar 

  • Pierard C, Budzinski H, Garrigues P (1996) Grain-size distribution of polychlorobiphenyls in coastal sediments. Environ Sci Technol 30:2776–2783

    Article  CAS  Google Scholar 

  • Purdom CE, Bye VJ, Eno NC, Hardiman PA, Sumpter JP, Tyler CR (1994) Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285

    Article  CAS  Google Scholar 

  • Ra JS, Oh SY, Lee BC, Kim SD (2008) The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environ Int 34:184–192

    Article  CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  Google Scholar 

  • Rico ÁR, Droge S, Temara A, Hermens JLM (2007) Bioavailability and sorption of LAS in marine sediments. Chem Biol Interact 169:140

    Article  Google Scholar 

  • Sawhney BL, Gent MPN (1990) Hydrophobicity of clay surfaces: sorption of 1,2-dibromoethane and trichloroethene. Clays Clay Miner 38:14–20

    Article  CAS  Google Scholar 

  • Schlenk D, Sapozhnikova Y, Irwin MA, Xie L, Hwang W, Reddy S et al (2005) In vivo bioassay-guided fractionation of marine sediment extracts from the Southern California Bight, USA, for estrogenic activity. Environ Toxicol Chem 24:2820–2826

    Article  CAS  Google Scholar 

  • Seki M, Yokota H, Matsubara H, Tsuruda Y, Maeda M, Tadokoro H et al (2002) Effects of ethinylestradiol on the reproduction and induction of Vitellogenin and testis-ova in medaka (Oryzias latipes). Environ Toxicol Chem 21:1692–1698

    CAS  Google Scholar 

  • Shareef A, Angove MJ, Wells JD, Johnson BB (2006a) Sorption of bisphenol A, 17α-ethynylestradiol and estrone to mineral surfaces. J Colloid Interface Sci 297:62–69

    Article  CAS  Google Scholar 

  • Shareef A, Angove MJ, Wells JD, Johnson BB (2006b) Aqueous solubilities of estrone, 17β-estradiol, 17 α-ethynylestradiol, and bisphenol A. J Chem Eng Data 51:879–881

    Article  CAS  Google Scholar 

  • Snyder SA, Westerhoff P, Yoon Y, Sedlak DL (2003) Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Eng Sci 20:449–469

    Article  CAS  Google Scholar 

  • Suzuki Y, Maruyama T (2006) Fate of natural estrogens in batch mixing experiments using municipal sewage and activated sludge. Water Res 40:1061–1069

    Article  CAS  Google Scholar 

  • Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants. I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90

    Article  CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Total and organic carbon. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis publisher, ON, Canada, pp 190–191

    Google Scholar 

  • United States Environmental Protection Agency (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 4th edn. Office of Research and Development, Cincinnati, OH

    Google Scholar 

  • Van Emmerik T, Angove MJ, Johnson BB, Wells JD, Fernandes MB (2003) Sorption of 17β-estradiol onto selected soil minerals. J Colloid Interface Sci 266:33–39

    Article  Google Scholar 

  • Yamamoto H, Liljestrand HM, Shimizu Y, Morita M (2003) Effects of physical-chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ Sci Technol 37:2646–2657

    Article  CAS  Google Scholar 

  • Yu Z, Xiao B, Huang W, Peng P et al (2004) Sorption of steroid estrogens to soils and sediments. Environ Toxicol Chem 23:531–539

    Article  CAS  Google Scholar 

  • Zhou JL, Rowland S, Mantoura RFC (1995) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Water Res 29:1023–1031

    Article  CAS  Google Scholar 

  • Zhou JL, Liu R, Wilding A, Hibberd A (2007) Sorption of selected endocrine disrupting chemicals to different aquatic colloids. Environ Sci Technol 41:206–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express deep gratitude to the Yeongsan River Research Laboratory for providing the instruments needed for chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Don Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(Supplementary material 1 DOC 2542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duong, C.N., Ra, J.S., Schlenk, D. et al. Sorption of Estrogens onto Different Fractions of Sediment and Its Effect on Vitellogenin Expression in Male Japanese Medaka. Arch Environ Contam Toxicol 59, 147–156 (2010). https://doi.org/10.1007/s00244-009-9429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9429-1

Keywords

Navigation