Skip to main content
Log in

Assessment of Water Quality Using Chemometric Tools: A Case Study of River Cooum, South India

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Multivariate statistical techniques were applied to identify and assess the quality of river water. Thirty samples were collected from the River Cooum, and basic chemical parameters—such as pH, effect concentration, total dissolved solids, major cations, anions, nutrients, and trace metals—were evaluated. To evaluate chemical variation and seasonal effect on the variables, analysis of variance and box-and-whisker plots were performed. Cluster analysis was applied, and pre-monsoon and post-monsoon major and minor clusters were classified. The relations among the stations were highlighted by cluster analysis, which were represented by dendograms to categorize different levels of contamination. Cluster analysis clearly grouped stations into polluted and unpolluted regions. The analysis classified the upper part of the river course into one unpolluted cluster; the middle and lower parts of the river clustered together, reflecting the presence of pollution. Factor analysis revealed that water quality is strongly affected by anthropogenic activities, rock–water interaction, and saline water intrusion. Seasonal variations in water chemistry were clearly highlighted by both cluster and factor analysis. Factor-score diagrams were used successfully to delineate the stations under study by the contributing factors, and seasonal effects on the sample stations were identified and evaluated. These statistical approaches and results yielded useful information about water quality and can lead to better water resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Association, Washington, DC, pp 1467

    Google Scholar 

  • AWWA (1971) Water quality and treatment. McGraw-Hill, New York, NY

    Google Scholar 

  • Bengrame K, Marhaba TF (2003) Using principal component analysis to monitor spatial and temporal changes in water quality. J Hazard Mater 100:179–195. doi:10.1016/S0304-3894(03)00104-3

    Article  Google Scholar 

  • Briz-Kishore BH, Murali G (1992) Factor analysis for revealing hydrochemical characteristics of a watershed. Environ Geol Water Sci 19:3–9. doi:10.1007/BF01740571

    Article  CAS  Google Scholar 

  • Brown E, Skougslad MW, Fishman MJ (1970) Methods for collection and analysis of water samples for dissolved minerals and gases. United States Geological Survey, Techniques for water resources investigations, book 5, chapter A1

  • Causape J, Quilez D, Aragues R (2006) Irrigation efficiency and quality of irrigation return flows in the Ebro River basin: an overview. Environ Monit Assess 117:451–461. doi:10.1007/s10661-006-0763-8

    Article  CAS  Google Scholar 

  • Cave M, Reeder S (1995) Reconstitution of in-situ compositions obtained by aqueous leaching of drill core: An evaluation using multivariate statistical deconvolution. Analyst 120:1341–1351. doi:10.1039/an9952001341

    Article  CAS  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (1998) Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

  • Davis JC (2002) Statistics and data analysis in geology. Wiley, New York, pp 526–540

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut 114:313–324. doi:10.1016/S0269-7491(00)00243-8

    Article  CAS  Google Scholar 

  • Ferrier RC, Edwards AC, Hirst D (2001) Water quality of Scottish rivers: spatial and temporal trends. Sci Total Environ 265(1–3):327–342. doi:10.1016/S0048-9697(00)00674-4

    Article  CAS  Google Scholar 

  • Grande JA, Borrego J, de la Torre ML, Sáinz A (2003) Application of cluster analysis to the geochemistry zonation of the estuary waters in the Tinto and Odiel Rivers (Huelva, Spain). Environ Geochem Health 25:233–246

    Article  CAS  Google Scholar 

  • Hamilton PA, Helsel DR (1995) Effects of agriculture on ground-water quality in five regions of the United States. Groundwater 33:217–226. doi:10.1111/j.1745-6584.1995.tb00276.x

    CAS  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez J, Fernandez I (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34:807–816

    Article  CAS  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. United States Geological Survey Water Supply Paper 2254

  • Hem JD (1991) Study and interpretation of the chemical characteristics of natural water, 3rd edn. Scientific publication no. 2254, Jodhpur

    Google Scholar 

  • Hitchon B, Billings GK, Kolvan JE (1971) Geochemistry and origin of formation waters in the Western Canada sedimentary basin. III. Factors controlling chemical composition. Geochim Cosmochim Acta 35:567–598. doi:10.1016/0016-7037(71)90088-3

    Article  CAS  Google Scholar 

  • Jarvie HP, Whitton BA, Neal C (1998) Nitrogen and phosphorus in east coast British rivers: Speciation, sources, and biological significance. Sci Total Environ 10:79–109. doi:10.1016/S0048-9697(98)00109-0

    Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151. doi:10.1177/001316446002000116

    Article  Google Scholar 

  • Kamman NC, Chalmers A, Clair TA, Major A, Moore RB, Norton SA et al (2005) Factors influencing mercury in freshwater surface sediments of northeastern North America. Ecotoxicology 14:101–111

    Article  CAS  Google Scholar 

  • Klovan JE (1975) R and Q mode factor analysis. In: McCammon O (ed) Concepts in geostatistics. Springer, New York

    Google Scholar 

  • Lawrence FW, Upchurch SB (1983) Identification of recharge areas using geochemical factor analysis. Ground Water 20:680–687. doi:10.1111/j.1745-6584.1982.tb01387.x

    Article  Google Scholar 

  • Liao S-w, Lai W-l, Chen J-j, Sheu J-y, Lee C-g (2006) Water quality during development and apportionment of pollution from rivers in Tapeng Lagoon, Taiwan. Environ Monit Assess 122:81–100

    Article  CAS  Google Scholar 

  • McGarial K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. Springer, New York

    Google Scholar 

  • Nie NH, Hull QH, Jenkins JC, Stembrenner K, Bernnt DH (1985) SPSS PC, Statistical Package for Social Sciences. McGraw Hill, New York

    Google Scholar 

  • Pacheco J (2001) Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environ Geol 40:708–715. doi:10.1007/s002540000180

    Article  CAS  Google Scholar 

  • Papatheodorou G, Demopoulou G, Lambrakis N (2006) A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecol Modell 193:759–776. doi:10.1016/j.ecolmodel.2005.09.004

    Article  Google Scholar 

  • Prasad R (1998) Fertilizer urea, food security, health and the environments. Curr Sci 75:667–683

    Google Scholar 

  • Rainwater FH, Thatcher LL (1960) Methods for collection and analysis of water samples. United States Geological Survey Water Supply Paper 1454

  • Rajmohan N, Elango L (2005) Nutrient chemistry of groundwater in an intensively irrigated region of southern India. Environ Geol 47:820–830. doi:10.1007/s00254-004-1212-z

    Article  CAS  Google Scholar 

  • Ramesh R, Shivkumar K, Eswaramoorthi S, Purvaja GR (1995) Migration and contamination of major and trace elements in groundwater of Madras City, India. Environ Geol 25:126–136. doi:10.1007/BF00767869

    Article  CAS  Google Scholar 

  • Rowell DJ (1994) Soil science: methods and applications. Longman Scientific and Technical

  • Ruiz F, Gomis V, Blasco P (1990) Application of factor analysis to the hydrogeochemical study of a coastal aquifer. J Hydrol 119:169–177. doi:10.1016/0022-1694(90)90041-U

    Article  CAS  Google Scholar 

  • Ryu JS, Lee KS, Kim JH, Ahn KH, Chang HW (2006) Geostatistical analysis for hydrogeochemical characterization of the Han River, Korea: Identification of major factors governing water chemistry. Environ Contam Toxicol 76:1–7. doi:10.1007/s00128-005-0882-x

    Article  CAS  Google Scholar 

  • Saxena VK, Shakeel A (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736

    CAS  Google Scholar 

  • Seyhan EV, Van de Caried AA, Engelen GB (1985) Multivariate analysis and interpretation of the hydrochemistry of a dolomite reef aquifer, Northern Italy. Water Resour Res 21:1010–1024. doi:10.1029/WR021i007p01010

    Article  CAS  Google Scholar 

  • Sharma R, Pervez S (2003) Enrichment and exposure of particulate lead in a traffic environment in India. Environ Geochem Health 25:297–306

    Article  CAS  Google Scholar 

  • Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim Cosmochim Acta 40:831–845. doi:10.1016/0016-7037(76)90035-1

    Article  CAS  Google Scholar 

  • Simeonov V, Einax JW, Stanimirova I, Kraft J (2002) Environmetric modeling and interpretation of river water monitoring data. Anal Bioanal Chem 374:898–905. doi:10.1007/s00216-002-1559-5

    Article  CAS  Google Scholar 

  • Smith E (2001) Pollutant concentrations of stormwater and captured sediment in flood control sumps draining an urban watershed. Water Res 35:3117–3126. doi:10.1016/S0043-1354(01)00008-2

    Article  CAS  Google Scholar 

  • Stow CA, Borsuk ME, Stanley DW (2001) Long-term changes in watershed nutrient inputs and riverine exports in the Neuse river, North Carolina. Water Res 35:1489–1499. doi:10.1016/S0043-1354(00)00402-4

    Article  CAS  Google Scholar 

  • Subba Rao N, John Devadas D (2003) Fluoride incidence in groundwater in an area of Peninsular India. Environ Geol 45:243–251. doi:10.1007/s00254-003-0873-3

    Article  Google Scholar 

  • Varrica D, Dongarra G, Sabatino G, Monna F (2003) Inorganic geochemistry of roadway dust from the metropolitan area of Palermo, Italy. Environ Geol 44:222–230

    CAS  Google Scholar 

  • Vega M, Pardo R, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32:3581–3592. doi:10.1016/S0043-1354(98)00138-9

    Article  CAS  Google Scholar 

  • Villaescusa-Celaya JA, Gutierrez-Galendo EA, Flores-Monoz G (2000) Heavy metals in the fine fraction of coastal sediments from Baja California (Mexico) and California (USA). Environ Pollut 108:453–462. doi:10.1016/S0269-7491(99)00222-5

    Article  CAS  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. doi:10.2307/2282967

    Article  Google Scholar 

  • Windom HL, Smith R, Rawlinson C, Hungspreugs M, Dharmvanij S, Wattayakorn G (1988) Trace metal transport in a tropical estuary. Mar Chem 24:293–305. doi:10.1016/0304-4203(88)90037-0

    Article  CAS  Google Scholar 

  • Yeung IMH (1999) Multivariate analysis of the Hong Kong Victoria Harbour water quality data. Environ Monit Assess 59:331–342. doi:10.1023/A:1006177824327

    Article  CAS  Google Scholar 

  • Yu S, Shang J, Zhao J, Guo H (2003) Factor analysis and dynamics of water quality of the Songhua River, northeast China. Water Air Soil Pollut 144:159–169. doi:10.1023/A:1022960300693

    Article  CAS  Google Scholar 

  • Zeng X, Rasmussen TC (2005) Multivariate statistical characterization of water quality in Lake Lanier, Georgia, USA. J Environ Qual 34:1980–1991. doi:10.2134/jeq2004.0337

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Giridharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giridharan, L., Venugopal, T. & Jayaprakash, M. Assessment of Water Quality Using Chemometric Tools: A Case Study of River Cooum, South India. Arch Environ Contam Toxicol 56, 654–669 (2009). https://doi.org/10.1007/s00244-009-9310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9310-2

Keywords

Navigation