Skip to main content
Log in

Effect of pH, EDTA, and Anions on Heavy Metal Toxicity Toward a Bioluminescent Cyanobacterial Bioreporter

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The bioavailability and therefore toxicity of a metal depends on the chemical species present in a particular environment. We evaluated the effect of a series of factors that could potentially modify metal speciation on the toxicity of Hg, Cu, Zn, and Cd toward a recombinant strain of the freshwater cyanobacterium Anabaena sp. PCC 7120 with cloned lux operon of luminescent terrestrial bacterium Photorhabdus luminescens. The strain, denoted as Anabaena CPB4337, showed a high constitutive luminescence with no need to add exogenous aldehyde. The tested factors were pH, EDTA (as organic ligand), and anions PO4 3–, CO3 2–, and Cl. Chemical modeling and correlation analyses were used to predict metal speciation and link it with toxicity. In general, metal toxicity significantly correlated to the predicted metal free-ion concentration, although Zn–EDTA complexes and certain Hg chloro-complexes could also exhibit some toxicity to cyanobacteria. An interesting feature of metal toxicity to strain Anabaena CPB4337 was that low amounts of PO4 3– and CO3 2– increased metal toxicity; this effect could not be related to significant changes in metal speciation and could be attributed to a modulating effect of these anions on metal/uptake toxicity. The combination of toxicity studies that take into account a range of factors that might modulate metal toxicity with chemical modeling to predict changes in metal speciation might be useful for interpreting complex toxicity data. Finally, this cyanobacterial bioreporter, due to its ecological relevance as a primary producer, could be used as a tool for toxicity assessment in freshwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue grenn algae. I Growth and nitrogen fixation byAnabaena cylindrica Lemm. Plant Physiol 30:366–372. doi:10.1104/pp.30.4.366

    Article  CAS  Google Scholar 

  • Allen HE, Hansen DJ (1996) The importance of trace metal speciation to water quality criteria. Water Environ Res 68:42–54. doi:10.2175/106143096X127307

    Article  CAS  Google Scholar 

  • Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.0 User’ manual. EPA/600/3-91/021. US Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  • Campbell CD, Hird M, Lumsdon DG, Meeussen JCL (2000) The effect of EDTA and fulvic acid on Cd, Zn and Cu toxicity to a bioluminescent construct (pUCD607) of Escherichia coli. Chemosphere 40:319–325. doi:10.1016/S0045-6535(99)00302-1

    Article  CAS  Google Scholar 

  • Campbell PG (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, New York, pp 45–103

    Google Scholar 

  • Cook SV, Chu A, Goodman RH (2000) Influence of salinity on Vibrio fischeri and lux-modified Pseudomonas fluorescens toxicity bioassays. Environ Toxicol Chem 19:2474–2477. doi:10.1897/1551-5028(2000)019<2474:IOSOVF>2.3.CO;2

    Article  CAS  Google Scholar 

  • Deheyn DD, Bencheikh-Latmani R, Latz MI (2004) Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms. Environ Toxicol 19:161–178. doi:10.1002/tox.20009

    Article  CAS  Google Scholar 

  • Deryabin DG, Aleshina ES (2008) Effect of salts on luminescence of natural and recombinant luminescent bacterial biosensors. Appl Biochem Microbiol 44:292–296. doi:10.1134/S0003683808030113

    Article  CAS  Google Scholar 

  • Fernandez-Piñas F, Wolk CP (1994) Expression of luxCD-E in Anabaena sp. can replace the use of exogenous aldehyde for in vivo localization of transcription by luxAB. Gene 150:169–174

    Article  Google Scholar 

  • Fernandez-Piñas F, Mateo P, Bonilla I (1991) Binding of cadmium by cyanobacterial growth media: free ion concentration as a toxicity index to the cyanobacterium Nostoc UAM208. Arch Environ Contam Toxicol 21:425–431. doi:10.1007/BF01060366

    Article  Google Scholar 

  • Fernandez-Piñas F, Leganes F, Wolk CP (2000) Bacterial lux gene as reporters in cyanobacteria. Methods Enzymol 305:513–527

    Article  Google Scholar 

  • Heijerick DG, Janssen CR, De Coen WM (2003) The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D. magna: development of a surface response model. Arch Environ Contam Toxicol 44:210–217

    Article  CAS  Google Scholar 

  • Herrero R, Lodeiro P, Rey-Castro C, Vilariño T, Sastre de Vicente ME (2005) Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res 39:3199–3210

    Article  CAS  Google Scholar 

  • Ho KT, Kuhn A, Pelletier MC, Hendricks TL, Helmstetter A (1999) pH dependent toxicity of five metals to three marine organisms. Environ Toxicol 14:235–240

    Article  CAS  Google Scholar 

  • Kandegedara A, Rorabacher DB (1999) Noncomplexing tertiary amines as better buffers covering the range of pH 3–11. Temperature dependence of their dissociation contants. Anal Chem 71:3140–3144

    Article  CAS  Google Scholar 

  • Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779

    Article  Google Scholar 

  • Newman MC, McCloskey JT (1996) Predicting relative toxicity and interaction of divalent metal ions: Microtox® bioluminescence assay. Environ Toxicol Chem 15:75–281

    Article  Google Scholar 

  • Parent L, Twiss MR, Campbell PG (1996) Influences of natural dissolved organic matter on the interaction of aluminium with the microalga Chlorella: a test of the free-ion model of trace-metal toxicity. Environ Sci Technol 30:1713–1720

    Article  CAS  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction. One-dimensional transport and inverse geochemical calculations: US Geological Survey Water-Resources Investigations Report 99–4259. US Geological Survey

  • Paton GI, Rattray EAS, Campbell CD, Cresser MS, Glover LA, Meeussen JCL, Killham K (1997) Use of genetically modified microbial biosensors for soil ecotoxicity testing. In: Pankhurst CF, Doube BM, Gupta VVSR et al (eds) Biological indicators of soil health. CAB International Press, Oxford, pp 394–418

    Google Scholar 

  • Perona E, Bonilla I, Mateo P (1999) Spatial and temporal changes in water quality in a Spanish river. Sci Total Environ 241:75–90

    Article  CAS  Google Scholar 

  • Riba F, Garcia-Luque E, Blasco J, Del Valls TA (2003) Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity. Chem Spec Bioavail 15:101–114

    Article  CAS  Google Scholar 

  • Riether KB, Dollard MAD, Billard P (2001) Assesment of heavy metal bioavailability using Escherichia coli ZntAP::lux and CopAP::lux-based biosensors. Appl Microbiol Biotechnol 57:712–716

    Article  CAS  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    Article  CAS  Google Scholar 

  • Simkiss K (1983) Lipid solubility of heavy metals in saline solutions. J Marine Biol Assoc UK 63:1–7

    Article  CAS  Google Scholar 

  • Szittner R, Meighen E (1990) Nucleotide sequence, expression and properties of luciferase coded by lux genes of a terrestrial bacterium. J Biol Chem 265:16581–16587

    CAS  Google Scholar 

  • Tauriainien SM, Virta MPJ, Karp MT (2000) Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res 34:2661–2666

    Article  Google Scholar 

  • van Dijk GM, Van Liere L, Admiraal W, Bannik BA, Cappon JJ (1994) Present state of the water quality of European rivers and implications for management. Sci Total Environ 145:187–195

    Article  Google Scholar 

  • Villaescusa I, Martinez M, Pilar M, Murat JC, Hosta C (1996) Toxicity of cadmium species on luminescent bacteria. Fresenius J Anal Chem 354:566–570

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Comunidad de Madrid grants 07M/0052/2002, GR/AMB/0084/2004, and S-0505/AMB/0321. Ismael Rodea-Palomares is the recipient of a Ph.D. research contract from Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Fernández-Piñas.

Additional information

I. Rodea-Palomares and C. González-García contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodea-Palomares, I., González-García, C., Leganés, F. et al. Effect of pH, EDTA, and Anions on Heavy Metal Toxicity Toward a Bioluminescent Cyanobacterial Bioreporter. Arch Environ Contam Toxicol 57, 477–487 (2009). https://doi.org/10.1007/s00244-008-9280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9280-9

Keywords

Navigation