Skip to main content
Log in

Natural DOM Affects Copper Speciation and Bioavailability to Bacteria and Ciliate

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the influence of natural dissolved organic materials (DOM) on copper speciation (total dissolved, particulate, and free Cu2+ ions) and bioavailability during a two-level experimental microbial food chain. Bacteria were used as the first trophic level, and Paramecium caudatum (protozoan) as the second. The organisms were obtained from a freshwater reservoir and kept under controlled laboratory conditions. Three experimental treatments were performed: exposure of the organisms to copper in the absence of DOM, exposure to DOM in the absence of copper, and exposure to both copper and DOM. Freshwater medium containing natural DOM and copper at a total dissolved concentration of 1.8 × 10−6 mol L−1 was furnished to bacteria, which was further used as food to the protozoan. The results showed that after bacterial growth, DOM concentration decreased as quantified by total organic carbon determinations. At the same time, free Cu2+ ions concentration increased in the medium. A lower copper concentration was detected in both microorganisms in the presence of DOM. We conclude that natural DOM reduced copper accumulation in the organisms on the first and second trophic levels, thus reducing the entrance of copper into the aquatic microbial food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA (American Public Health Association), American Water Works association, Water Environment Federation (1995) Standard methods for the examination of water and waste water, 19th edn. APHA, Washington, DC

    Google Scholar 

  • Apte SC, Batley GE, Bowles KC, Brown PL, Creighton N, Hales LT, Hyne RV, Julli M, Markich SJ, Pablo F, Rogers NJ, Stauber JL, Wilde K (2005) A comparison of copper speciation measurements with the toxic responses of three sensitive freshwater organisms. Environ Chem 2(4):320–330. doi:10.1071/EN05048

    Article  CAS  Google Scholar 

  • Campbell PGC, Twiss MR, Wilkinson KJ (1997) Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Can J Fish Aquat Sci 54:2543–2554. doi:10.1139/cjfas-54-11-2543

    Article  CAS  Google Scholar 

  • Capone DG, Bauer JE (1992) Microbial processes in coastal pollution. In: Mitchel R (ed) New concepts in environmental microbiology. Wiley-Liss, New York, pp 91–238

    Google Scholar 

  • De Schamphelaere KAC, Vasconcelos FM, Tack FMG, Allen HE, Janssen CR (2004) Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23:1248–1255

    Article  CAS  Google Scholar 

  • Docherty KM, Young KC, Maurice PA, Bridgham SD (2006) Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities. Microbiol Ecol 52:378–388. doi:10.1007/s00248-006-9089-x

    Article  CAS  Google Scholar 

  • Ellis BD, Butterfield P, Jones WL, Mcfeters GA, Camper AK (2000) Effects of carbon source, carbon concentration, and chlorination on growth related parameters of heterotrophic biofilm bacteria. Microbiol Ecol 38:330–347. doi:10.1007/s002489901003

    Article  Google Scholar 

  • Esparza-Soto M, Westerhoff P (2003) Biosorption of humic and fulvic acids to live activates sludge biomass. Water Res 37:2301–2310. doi:10.1016/S0043-1354(02)00630-9

    Article  CAS  Google Scholar 

  • Fein JB, Boily J-F, Güçlü K, Kaulbach E (1999) Experimental study of humic acid adsorption onto bacteria and Al-oxide mineral surfaces. Chem Geol 162:33–45. doi:10.1016/S0009-2541(99)00075-3

    Article  CAS  Google Scholar 

  • Findlay SEG, Sinsabaugh RL, Sobczak WV, Hoostal M (2003) Metabolic and structural response of hypopheic microbial communities to variations in supply of dissolved organic matter. Limnol Oceanogr 48:1608–1617

    CAS  Google Scholar 

  • Haughey MA, Anderson MA, Whitney RD, Taylor WD, Losee RF (2000) Forms and fate of Cu in source drinking water reservoir followingCuSO4 treatment. Water Res 34:3440–3452. doi:10.1016/S0043-1354(00)00054-3

    Article  CAS  Google Scholar 

  • Jian-Wen Q, Tang X, Zheng C, Li Y, Huang Y (2007) Copper complexation by fulvic acid affects copper toxicity to the larvae of the polychaete Hydroides elegans. Mar Environ Res 64:563–573. doi:10.1016/j.marenvres.2007.06.001

    Article  CAS  Google Scholar 

  • Keung CF, Guo F, Qian P, Wang W-X (2008) Influences of metal-ligand complexes on the cadmium and zinc bioknetics in the marine bacterium Bacillus firmus. Environ Toxicol Cem 27:131–137. doi:10.1897/07-048.1

    Article  CAS  Google Scholar 

  • Kungolos A, Samaras P, Tsiridis V, Petala M, Sakellaropoulos G (2006) Bioavailability and toxicity of heavy metals in the presence of natural organic matter. J Environ Sci Health 41:1509–1517

    CAS  Google Scholar 

  • Le Jeune AH, charpin M, Sargos D, Lenain JF, Deluchat V, Ngayil N, Baudu M, Amblard C (2007) Planktonic microbial community responses to added copper. Aquatic Toxicol 83:223–237

    Article  CAS  Google Scholar 

  • Lombardi AT, Hidalgo TMR, Vieira AAH, Sartori AL (2007) Toxicity of ionic copper to the freshwater microalgae Scenedesmus acuminatus (Chlorophyceae, Chlorococcales). Phycologia 46:74–78. doi:10.2216/06-40.1

    Article  Google Scholar 

  • Lores EM, Pennock RJ (1999) Bioavailability and trofic transfer of humic- bound copper from bacteria to zooplankton. Mar Ecol Prog Ser 187:67–85. doi:10.3354/meps187067

    Article  CAS  Google Scholar 

  • Lores EM, Snyder RA, Pennock JR (1999) The effect of humic acid on uptake-adsorption of copper by a marine bacterium and two marine ciliates. Chemosphere 28:293–310. doi:10.1016/S0045-6535(98)00190-8

    Article  Google Scholar 

  • Mart L (1979) Prevention of contamination and other accuracy risks in voltammetric trace analysis of natural waters. Part I. Preparatory steps, filtration and storage of water samples. Fresenius Z Anal Chem 296:350–357. doi:10.1007/BF00479972

    Article  CAS  Google Scholar 

  • Maurice PA, Manecki M, Fein JB, Schaefer J (2004) Fractionation of an aquatic fulvic acid upon adsorption to the bacterium, Bacillus subtilis. Geomicrobiol J 21:69–78. doi:10.1080/01490450490266235

    Article  CAS  Google Scholar 

  • Mopper K, Kiebe DJ (2002) Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus. In: Hansell D, Carlson C (eds) A biogeochemistry of marine dissolved organic matter. Academic Press, New York

    Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35(8):1744–1756

    CAS  Google Scholar 

  • Nies DH (2003) Efflux mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339. doi:10.1016/S0168-6445(03)00048-2

    Article  CAS  Google Scholar 

  • Nogueira PFM (2007) Interação entre a matéria orgânica natural, o cobre e microorganismos heterotróficos: implicações na dinâmica do metal e sua disponibilização para a biota aquática. Tese de doutorado. UFSCar, São Carlos, Brazil

    Google Scholar 

  • Nogueira PFM, Melão MGG, Lombardi AT, Vieira AH (2005) The effects of Anabaena spiroides (Cyanophyceae) exopolisaccharide on copper toxicity to Simocephalus serrulatus (Cladocera, Daphinidae). Freshwater Biol 50:1560–1567. doi:10.1111/j.1365-2427.2005.01406.x

    Article  CAS  Google Scholar 

  • Perdue EM, Ritchie JD (2003) Dissolved organic matter in fresh waters. In: Holland HD, Turekian KK (eds) Surface and ground water weathering erosion and soils. Elsevier-Pergamon, Oxford, pp 273–318

    Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507. doi:10.1016/S0269-7491(02)00238-5

    Article  CAS  Google Scholar 

  • Rehman A, Shakoori FR, Shakoori AR (2007) Heavy metal resistant ciliate, Euplotes mutabilis, isolated from industrial effluents can decontaminate wastewater of heavy metals. Bull Environ Contam Toxicol 76:907–913. doi:10.1007/s00128-006-1004-0

    Article  CAS  Google Scholar 

  • Rojas NET, Marins MA, Rocha O (2001) The effect of abiotic factors on the hatching of Moina micrura Kurz, 1874 (Crustacea Cladocera) ephippial eggs. Brazil J Biol 61(3):371–376. doi:10.1590/S1519-69842001000300005

    CAS  Google Scholar 

  • Sauvant MP, Pepin D, Bohatier J, Groliere CA (2000) Effects of chelators on the acute toxicity and bioavailability of aluminium to Tetrahymena pyriformis. Aquatic Toxicol 47:259–275

    Article  CAS  Google Scholar 

  • Sigg L, Behra R (2005) Speciation and bioavailability of trace metals in freshwater environments In: Sigel A, Sigel H, Sigel RKO (eds) Metals ions in biological systems. Taylor e Francis Group, Boca Rotan, pp 47–73

  • Smiejan A, Wilkinson KO, Rosser C (2003) Cadmium bioaccumulation bu a freshwater bacterium Rhodospifillum rubrum. Environ Sci Technol 37:701–706. doi:10.1021/es025901h

    Article  CAS  Google Scholar 

  • Sunda WG, Hanson AK (1987) Measurement of free cupric ion concentration in seawater by a ligand competition technique involving copper sorption onto C-18 SEPPAD cartridges. Limnol Oceanogr 32:537–551

    CAS  Google Scholar 

  • Tranvik LA, Siebeurth J (1989) Effects of flocculated humic matter on free and attached pelagic microorganisms. Limnol Oceanogr 34:688–699

    Article  CAS  Google Scholar 

  • van Leeuwen HP, Town R, Buffle J, Cleven RMJ, Davison W, Puy J, van Riemsdijk WH, Sigg L (2005) Dynamic Speciation analysis and bioavailability of metals in aquatic systems. Environ Sci Technol 39:22–29

    Google Scholar 

  • Wiramanaden CIE, Cullen JT, Ross ARS, Orians KJ (2008) Cyanobacterial copper-binding ligands isolated from artificial seawater cultures. Mar Chem 110:28–41. doi:10.1016/j.marchem.2008.02.003

    Article  CAS  Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731. doi:10.1016/j.biochi.2006.09.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. M. Nogueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, P.F.M., Melão, M.G.G., Lombardi, A.T. et al. Natural DOM Affects Copper Speciation and Bioavailability to Bacteria and Ciliate. Arch Environ Contam Toxicol 57, 274–281 (2009). https://doi.org/10.1007/s00244-008-9276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9276-5

Keywords

Navigation