Physiological Stress in Native Southern Brook Trout During Episodic Stream Acidification in the Great Smoky Mountains National Park

Abstract

Episodic stream acidification from atmospheric deposition is suspected to detrimentally impact native southern brook trout (Salvelinus fontinalis) in Great Smoky Mountains National Park (GRSM) headwater streams. To test the hypothesis that episodes of stream acidification cause physiological distress to native trout, caged fish at three sites were exposed to acid episodes during in situ bioassays conducted in June 2006 and March 2007. Stream pH decreased (>0.7 pH units) and total dissolved aluminum (AlTD) increased (>175 μg/L) at all three sites during acid episodes in both bioassays. Whole-body sodium concentrations were significantly reduced (10–20%) following the acid episodes, when preceding 24-h mean pH values of 4.88, 5.09, and 4.87 and corresponding 24-h time-weighted average AlTD concentrations of 210, 202, and 202 μg/L were observed. Lower whole-body sodium concentrations were correlated with elevated H+ and AlTD concentrations. Loss of sodium ions in native southern brook trout was consistent with physiological distress resulting from acid exposure reported in salmonids in other investigations. Further research is necessary to conclude whether acid episodes are responsible for extirpation of brook trout from headwater streams in the GRSM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Allin CJ, Wilson RW (1999) Behavioural and metabolic effects of chronic exposure to sublethal aluminum in acidic soft water in juvenile rainbow trout (Oncorhynchus mykiss). Canadian J Fish Aquat Sci 56(4):670–678. doi:10.1139/cjfas-56-4-670

    Article  CAS  Google Scholar 

  2. Baker JP, Schofield CL (1982) Aluminum toxicity to fish in acidic waters. Water Air Soil Pollut 18:289–309. doi:10.1007/BF02419419

    Article  CAS  Google Scholar 

  3. Baker JP, Van Sickle J, Gagen CJ, DeWalle DR, Sharpe WE, Carline RF, Baldigo BP, Murdoch PS, Bath DW, Krester WA, Simonin HA, Wigington PJ (1996) Episodic acidification of small streams in the northeastern United States: Effects on fish populations. Ecol Appl 6(2):422–437. doi:10.2307/2269380

    Article  Google Scholar 

  4. Baldigo BP, Lawrence GB (2001) Effects of stream acidification and habitat on fish populations of a North American river. Aquat Sci 63(2):196–222. doi:10.1007/PL00001352

    Article  Google Scholar 

  5. Baldigo BP, Murdoch PS (1997) Effect of stream acidification and inorganic aluminum on mortality of brook trout (Salvelinus fontinalis) in the Catskill Mountains, New York. Can J Fish Aquat Sci 54(3):603–615. doi:10.1139/cjfas-54-3-603

    Article  CAS  Google Scholar 

  6. Baldigo BP, Lawrence G, Simonin H (2007) Persistent mortality of brook trout in episodically acidified streams of the southwestern Adirondack Mountains, New York. Trans Am Fish Soc 136(1):121–134. doi:10.1577/T06-043.1

    Article  Google Scholar 

  7. Baumgardner RE, Isil SS, Lavery TF, Rogers CM, Mohnen VA (2003) Estimates of cloud water deposition at mountain acid deposition program sites in the Appalachian Mountains. J Air Waste Manage Assoc 53:291–308

    CAS  Google Scholar 

  8. Bivens RD, Strange RJ, Peterson DC (1985) Current distribution of the native brook trout in the Appalachian region of Tennessee. J Tenn Acad Sci 60(4):101–105

    Google Scholar 

  9. Booth CE, McDonald DG, Simons BP, Wood CM (1988) Effects of aluminum and low pH on net ion fluxes and ion balance in the brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 45(9):1563–1574. doi:10.1139/f88-186

    Article  CAS  Google Scholar 

  10. Busing RT (2005) NPP (Net Primary Production) Temperate Forest: Great Smoky Mountains, Tennessee, USA, 1978–1992. Data set. Available: http://www.daac.ornl.gov. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee (September 2007)

  11. Calta M (2002) Does brown trout (Salmo trutta L.) larval development retardation caused by short-term exposure to low pH and elevated aluminum concentration affect a second episode of toxicity? J Appl Ichthyol 18(3):210–215. doi:10.1046/j.1439-0426.2002.00350.x

    Article  CAS  Google Scholar 

  12. Carline RF, DeWalle DR, Sharpe WE, Dempsey WA, Gagen CJ, Swistock B (1992) Water chemistry and fish community responses to episodic stream acidification in Pennsylvania, USA. Environ Pollut 78(1–3):45–48. doi:10.1016/0269-7491(92)90008-X

    Article  CAS  Google Scholar 

  13. Cleveland L, Little EE, Ingersoll CG, Wiedmeyer RH, Hunn JB (1991) Sensitivity of brook trout to low pH, low calcium and elevated aluminum concentrations during laboratory pulse exposures. Aquat Toxicol 19(4):303–318. doi:10.1016/0166-445X(91)90055-E

    Article  CAS  Google Scholar 

  14. Cook RB, Elwood JW, Turner RR, Bogle MA, Mulholland PJ, Palumbo AV (1994) Acid-base chemistry of high-elevation streams in the Great Smoky Mountains National Park. Water Air Soil Pollut 72(1–4):331–356. doi:10.1007/BF01257133

    Article  CAS  Google Scholar 

  15. Dennis TE, Bulger AJ (1995) Condition factor and whole-body sodium concentrations in a freshwater fish: Evidence for acidification stress and possible ionoregulatory over-compensation. Water Air Soil Pollut 85(2):377–382. doi:10.1007/BF00476858

    Article  CAS  Google Scholar 

  16. Deyton EB, Schwartz JS, Robinson RB, Neff KJ, Moore SE, Kulp MA (2008) Characterizing episodic stream acidity during stormflows in the Great Smoky Mountain National Park. Water Air Soil Pollut. doi:10.1007/s11270-008-9753-5

  17. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20(10):2383–2396. doi:10.1897/1551-5028(2001)020<2383:BLMOTA>2.0.CO;2

    Article  CAS  Google Scholar 

  18. Driscoll CT, Postek KM (1995) The chemistry of aluminum in surface waters. In: Sposito G (ed) The Environmental Chemistry of Aluminum. Lewis, Chelsea, MI, pp 363–418

    Google Scholar 

  19. Driscoll CT, Baker JP, Bisogni JJ, Schofield CL (1980) Effect of aluminium speciation on fish in dilute acidified waters. Nature 284:161–164. doi:10.1038/284161a0

    Article  CAS  Google Scholar 

  20. Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, Stoddard JL, Weathers KC (2001) Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience 51(3):180–198. doi:10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2

    Article  Google Scholar 

  21. Dussault EB, Playle RC, Dixon DG, McKinley RS (2005) Effects of chronic aluminum exposure on swimming and cardiac performance in rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 30:137–148. doi:10.1007/s10695-005-4317-8

    Article  Google Scholar 

  22. Exley C, Chappell JS, Birchall JD (1991) A mechanism for acute aluminium toxicity in fish. J Theor Biol 151:417–428. doi:10.1016/S0022-5193(05)80389-3

    Article  CAS  Google Scholar 

  23. Fiss FC, Carline RF (1993) Survival of brook trout embryos in 3 episodically acidified streams. Trans Am Fish Soc 122(2):268–278. doi:10.1577/1548-8659(1993)122<0268:SOBTEI>2.3.CO;2

    Article  Google Scholar 

  24. Gagen CJ, Sharpe WE (1987) Influence of acid runoff episodes on survival and net sodium-balance of brook trout (Salvelinus-fontinalis) confined in a mountain stream. Ann Soc R Zool Belgique 117:219–230

    Google Scholar 

  25. Gagen CJ, Sharpe WE, Carline RF (1993) Mortality of brook trout, mottled sculpins, and slimy sculpins during acidic episodes. Trans Am Fish Soc 122(4):616–628. doi:10.1577/1548-8659(1993)122<0616:MOBTMS>2.3.CO;2

    Article  Google Scholar 

  26. Gagen CJ, Sharpe WE, Carline RF (1994) Downstream movement and mortality of brook trout (Salvelinus fontinalis) exposed to acidic episodes in streams. Can J Fish Aquat Sci 51(7):1620–1628. doi:10.1139/f94-162

    Article  Google Scholar 

  27. Gensemer RW, Playle RC (1999) The bioavailability and toxicity of aluminum in aquatic environments. Crit Rev Environ Sci Technol 29:315–450. doi:10.1080/10643389991259245

    Article  CAS  Google Scholar 

  28. Grippo RS, Dunson WA (1996) The body ion loss biomarker. 1. Interactions between trace metals and low pH in reconstructed coal mine-polluted water. Environ Toxicol Chem 15(11):1955–1963. doi:10.1897/1551-5028(1996)015<1955:TBILBI>2.3.CO;2

    Article  Google Scholar 

  29. Grosell M, Nielsen C, Bianchini A (2002) Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C Toxicol Pharmacol 133(1–2):287–303. doi:10.1016/S1532-0456(02)00085-6

    Article  Google Scholar 

  30. Hesthagen T, Heggenes J, Berger LarsenBM, HM ForsethT (1999) Effects of water chemistry and habitat on the density of young brown trout Salmo trutta in acidic streams. Water Air Soil Pollut 112:85–106. doi:10.1023/A:1005068404832

    Article  CAS  Google Scholar 

  31. Hunn JB (1985) Role of calcium in gill function in fresh-water fishes. Comp Biochem Physiol A Physiol 82(3):543–547. doi:10.1016/0300-9629(85)90430-X

    Article  Google Scholar 

  32. Hurley GV, Foyle TP, White WJ (1989) Differences in acid tolerance during the early life stages of 3 strains of brook trout, Salvelinus-fontinalis. Water Air Soil Pollut 46:387–398

    CAS  Google Scholar 

  33. Ingersoll CG, Gulley CG, Mount DR, Mueller ME, Fernandez JD, Hockett JR, Bergman HL (1990) Aluminum and acid toxicity to 2 strains of brook trout (Salvelinus-fontinalis). Can J Fish Aquat Sci 47(8):1641–1648

    CAS  Google Scholar 

  34. Johnson NM, Driscoll CT, Eaton JS, Likens GE, McDowell WH (1981) Acid-rain, dissolved aluminum and chemical-weathering at the Hubbard-Brook Experimental Forest, New Hampshire. Geochim Cosmochim Acta 45(9):1421–1437. doi:10.1016/0016-7037(81)90276-3

    Article  CAS  Google Scholar 

  35. Johnson DW, Simonin HA, Colquhoun JR, Flack FM (1987) In situ toxicity testing of fishes in acid waters. Biochemistry 3:181–208

    CAS  Google Scholar 

  36. Kaeser AJ, Sharpe WE (2001) The influence of acidic runoff episodes on slimy sculpin reproduction in stone run. Trans Am Fish Soc 130(6):1106–1115. doi:10.1577/1548-8659(2001)130<1106:TIOARE>2.0.CO;2

    Article  CAS  Google Scholar 

  37. King W (1939) A program for the management of fish resources in the Great Smoky Mountains National Park. Trans Am Fish Soc 68(1):86–95. doi:10.1577/1548-8659(1938)68[86:APFTMO]2.0.CO;2

    Article  Google Scholar 

  38. King P, Newman RB, Hadley JB (1968) Geology of the Great Smoky Mountains National Park, Tennessee and North Carolina. Professional Paper 587, United States Geologic Survey

  39. Kocovsky PM, Carline RF (2005) Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams. Trans Am Fish Soc 134(5):1299–1312. doi:10.1577/T04-177.1

    Article  CAS  Google Scholar 

  40. Larson GL, Moore SE (1985) Encroachment of exotic rainbow-trout into stream populations of native brook trout in the southern Appalachian Mountains. Trans Am Fish Soc 114(2):195–203. doi:10.1577/1548-8659(1985)114<195:EOERTI>2.0.CO;2

    Article  Google Scholar 

  41. MacAvoy SE, Bulger AJ (1995) Survival of brook trout (Salvelinus fontinalis) embryos and fry in streams of different acid sensitivity in Shenandoah National Park, USA. Water Air Soil Pollut 85(2):445–450. doi:10.1007/BF00476869

    Article  CAS  Google Scholar 

  42. MacAvoy SE, Bulger AJ (2004) Sensitivity of blacknose dace (Rhinichthys atratulus) to moderate acidification events in Shenandoah National Park, USA. Water Air Soil Pollut 153:125–134. doi:10.1023/B:WATE.0000019935.81354.92

    Article  CAS  Google Scholar 

  43. Matsuo AYO, Val AL (2007) Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in cardinal tetras Paracheirodon axelrodi (Schultz) subjected to extremely low pH. J Fish Biol 70(4):989–1000. doi:10.1111/j.1095-8649.2007.01358.x

    Article  CAS  Google Scholar 

  44. McCracken GF, Parker CR, Guffey SZ (1993) Genetic differentiation and hybridization between stocked hatchery and native brook trout in Great Smoky Mountains National Park. Trans Am Fish Soc 122(4):533–542. doi:10.1577/1548-8659(1993)122<0533:GDAHBS>2.3.CO;2

    Article  Google Scholar 

  45. Mount DR, Ingersoll CG, Gulley DD, Fernandez JD, Lapoint TW, Bergman HL (1988) Effect of long-term exposure to acid, aluminum, and low calcium on adult brook trout (Salvelinus fontinalis). 1. Survival, growth, fecundity, and progeny survival. Can J Fish Aquat Sci 45(9):1623–1632. doi:10.1139/f88-192

    Article  CAS  Google Scholar 

  46. Mumford SL (2004) Chapter 13: Histology for Finfish. NWFHS Laboratory Procedures Manual. USFWS, Olympia Fish Health Center, Olympia

    Google Scholar 

  47. NADP (National Atmospheric Deposition Program) (2006) National Atmospheric Deposition Program 2006 annual summary. Illinois State Water Survey, NADP Data Report 2006-01, Champaign, IL

  48. Neff KJ (2007) Physiological stress in native brook trout (Salvelinus fontinalis) during episodic acidification of streams in the Great Smoky Mountains National Park. MS Thesis. University of Tennessee, Knoxville

  49. Neville CM, Campbell PGC (1988) Possible mechanisms of aluminum toxicity in a dilute, acidic environment to fingerlings and older life stages of salmonids. Water Air Soil Pollut 42:311–327. doi:10.1007/BF00279276

    Article  CAS  Google Scholar 

  50. NPS (National Park Service) (2007) Great Smoky Mountains National Park, park statistics. Available: http://www.nps.gov/grsm/parkmgmt/statistics.htm. (September 2007)

  51. Poleo ABS (1995) Aluminum polymerization–A mechanism of acute toxicity of aqueous aluminum to fish. Aquat Toxicol 31(4):347–356. doi:10.1016/0166-445X(94)00083-3

    Article  CAS  Google Scholar 

  52. Porter E, Blett T, Potter DU, Huber C (2005) Protecting resources on federal lands: Implications of critical loads for atmospheric deposition of nitrogen and sulfur. Bioscience 55(7):603–612. doi:10.1641/0006-3568(2005)055[0603:PROFLI]2.0.CO;2

    Article  Google Scholar 

  53. Reynolds J (1996) Electrofishing. In: Murphy B, Willis DW (ed) Fisheries Techniques, Bethesda, MD, pp 221–253

  54. Robinson RB, Roby JC (2006) Concentration-duration-frequency curves for pH in a stream in the Great Smoky Mountains. ASCE J Environ Engin 132(12):1600–1605. doi:10.1061/(ASCE)0733-9372(2006)132:12(1600)

    Article  CAS  Google Scholar 

  55. Robinson RB, Barnett TW, Harwell GR, Moore SE, Kulp MA, Schwartz JS (2008) pH and acid anion time trends in different elevation ranges in the Great Smoky Mountains National Park. ASCE J Environ Eng 134:800–808. doi:10.1061/(ASCE)0733-9372(2008)134:9(800)

    Article  CAS  Google Scholar 

  56. Robinson GD, Dunson WA, Wright JE, Mamolito GE (1976) Differences in low pH tolerance among strains of brook trout (Salvelinus-fontinalis). J Fish Biol 8(1):5–17. doi:10.1111/j.1095-8649.1976.tb03901.x

    Article  Google Scholar 

  57. SERCC (Southeast Regional Climate Center) (2007) Available: http://radar.meas.ncsu.edu/cgi-bin/sercc/ (May 2007)

  58. Simonin HA, Kretser WA, Bath DW, Olson M, Gallagher J (1993) In-situ bioassays of brook trout (Salvelinus fontinalis) and blacknose dace (Rhinichthys atratulus) in Adirondack streams affected by episodic acidification. Can J Fish Aquat Sci 50(5):902–912. doi:10.1139/f93-104

    Article  Google Scholar 

  59. Simonin HA, Colquhoun JR, Paul EA, Symula J, Dean HJ (2005) Have Adirondack stream fish populations changed in response to decreases in sulfate deposition? Trans Am Fish Soc 134(2):338–345. doi:10.1577/T03-138.1

    Article  Google Scholar 

  60. Stoddard JL, Kahl JS, Deviney FA, DeWalle DR, Driscoll CT, Herlihy AT, Kellog JH, Murdoch PS, Webb JR, Webster KE (2003) Response of surface water chemistry to the Clean Air Act Amendments of 1990. EPA/620/R-03/001. US Environmental Protection Agency, Corvallis, OR. 92 pp

  61. Sullivan TJ, Cosby BJ (1998) Modeling the concentration of aluminum in surface waters. Water Air Soil Pollut 105:643–659. doi:10.1023/A:1004957426629

    Article  CAS  Google Scholar 

  62. Sullivan TJ, Webb JR, Snyder KU, Herlihy AT, Cosby BJ (2007) Spatial distribution of acid-sensitive and acid-impacted streams in relation to watershed features in the Southern Appalachian Mountains. Water Air Soil Pollut 182(1–4):57–71. doi:10.1007/s11270-006-9320-x

    Article  CAS  Google Scholar 

  63. Van Sickle J, Baker JP, Simonin HA, Baldigo BP, Krester WA, Sharpe WE (1996) Episodic acidification of small streams in the northeastern United States: fish mortality in field bioassays. Ecol Appl 6(2):408–421. doi:10.2307/2269379

    Article  Google Scholar 

  64. Weathers KC, Simkin SM, Lovett GM, Lindberg SE (2006) Empirical modeling of atmospheric deposition in mountainous landscapes. Ecol Appl 16(4):1590–1607. doi:10.1890/1051-0761(2006)016[1590:EMOADI]2.0.CO;2

    Article  Google Scholar 

  65. Webb JR, Cosby BJ, Deviney FA, Galloway JN, Maben SW, Bulger AJ (2004) Are brook trout streams in western Virginia and Shenandoah National Park recovering from acidification? Environ Sci Technol 38(15):4091–4096. doi:10.1021/es049958a

    Article  CAS  Google Scholar 

  66. Wigington PJ, Baker JP, DeWalle DR, Kretser WA, Murdoch PS, Simonin HA, VanSickle J, McDowell MK, Peck DV, Barchet WR (1996) Episodic acidification of small streams in the northeastern United States: Episodic Response Project. Ecol Appl 6(2):374–388. doi:10.2307/2269377

    Article  Google Scholar 

  67. Wilson RW, Wood CM (1992) Swimming performance, whole-body ions, and gill Al accumulation during acclimation to sublethal aluminum in juvenile rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 10(2):149–159. doi:10.1007/BF00004526

    Article  CAS  Google Scholar 

  68. Wood CM, McDonald DG (1982) Physiological mechanisms of acid toxicity to fish. In: Johnson RE (ed) Acid rain/fisheries. American Fisheries Society, Bethesda, MD, pp 197–226

    Google Scholar 

  69. Wood CM, McDonald DG, Ingersoll CG, Mount DR, Johannsson OE, Landsberger S, Bergman HL (1990) Whole-body ions of brook trout (Salvelinus fontinalis) alevins - Responses of yolk-sac and swim-up stages to water acidity, calcium, and aluminum, and recovery effects. Can J Fish Aquat Sci 47(8):1604–1615

    CAS  Google Scholar 

  70. Woodward DF, Little FaragAM, EE SteadmanB, Yancik R (1991) Sensitivity of Greenback cutthroat trout to acidic pH and elevated aluminum. Trans Am Fish Soc 120(1):34–42. doi:10.1577/1548-8659(1991)120<0034:SOGCTT>2.3.CO;2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research funded through the University of Tennessee Natural Research Policy Center by the US Environmental Protection Agency agreement EM-83298901-1, but has not been subjected to the Agency’s review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. We thank E. Deyton for assistance in the field and laboratory, and with data management; the UTK CEE water quality lab for performing chemical analyses; and dozens of volunteers who assisted with intense fieldwork including the GRSM fisheries field crew, T. Smith, L. Neff, K. Jackson, D. Carter, and G. Zimmerman.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keil J. Neff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neff, K.J., Schwartz, J.S., Henry, T.B. et al. Physiological Stress in Native Southern Brook Trout During Episodic Stream Acidification in the Great Smoky Mountains National Park. Arch Environ Contam Toxicol 57, 366–376 (2009). https://doi.org/10.1007/s00244-008-9269-4

Download citation

Keywords

  • Brook Trout
  • Headwater Stream
  • Inductively Couple Plasma Atomic Emission Spectroscopy
  • Acid Neutralize Capacity
  • Test Container