Skip to main content

Advertisement

Log in

Toxicokinetics of Waterborne Trivalent Arsenic in the Freshwater Bivalve Corbicula fluminea

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Arsenite (AsIII) uptake and elimination kinetics were studied in a freshwater bivalve, Corbicula fluminea, exposed to several nominal concentrations of AsIII (0, 100, 300, 500, and 1000 μg L−1) in a static 28-day assay, followed by a depuration stage of 14 days. At the end of each sampling time (days 0, 7, 28, and 42) whole-body portions were surveyed for total As concentrations and, complimentarily, surveyed for whole-body metallothionein (MT) induction to assess its role as a defense mechanism against exposure to AsIII. Histochemical evaluation of the digestive gland was performed to verify As deposition and elimination in the tissue. Results show a significant increase in whole-body total As after 28 days of exposure for all treatments, followed by a decrease at the end of the depuration phase. Biodynamic kinetic models for As uptake and elimination were obtained from bioaccumulation data during the exposure phase, for all As treatments, by estimating uptake and elimination rate constants. Bioconcentration factors (BCFs) were estimated by the ratio of these constants. Results revealed that exposure to higher concentrations of AsIII causes a decrease in BCFs, suggesting that C. fluminea triggers effective regulatory mechanisms when exposed to higher concentrations of the metalloid. Significant induction of MT was detected during the exposure phase, followed by a decrease in MT concentration to control levels after depuration for all treatments. No significant differences in MT concentrations were observed between treatments. This finding may confirm the role of MT as part of the As regulation process, but its independence relative to concentrations of AsIII in water suggests that MT induction is not dose dependent. The histochemical evaluation provided clear evidence that As was effectively accumulated in the digestive gland during exposure and eliminated during depuration. The present work demonstrated that C. fluminea is capable of regulating As, even at exposures as high as 1000 μg L−1 of waterborne AsIII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202. doi:10.1016/j.aquatox.2005.08.015

    Article  CAS  Google Scholar 

  • Apeti DA, Johnson E, Robinson L (2005) A model for bioaccumulation of metals in Crassostrea virginica from Apalachicola Bay, Florida. Am J Environ Sci 1:239–248

    Article  CAS  Google Scholar 

  • Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419. doi:10.1146/annurev.pharmtox.37.1.397

    Article  CAS  Google Scholar 

  • Aposhian HV, Aposhian MM (2006) Arsenic toxicology: five questions. Chem Res Toxicol 19:1–15. doi:10.1021/tx050106d

    Article  CAS  Google Scholar 

  • Bailer AJ, Walker SE, Venis K (2000) Estimating and testing bioconcentration factors. Environ Toxicol Chem 19:2338–2340. doi:10.1897/1551-5028(2000)019<2338:EATBF>2.3.CO;2

    Article  CAS  Google Scholar 

  • Baudrimont M, Metivaud J, Maury-Brachet R, Ribeyre F, Boudu A (1997a) Bioaccumulation and metallothionein response in the asiatic clam Corbicula fluminea after experimental exposure to cadmium and inorganic mercury. Environ Toxicol Chem 16:2096–2105. doi:10.1897/1551-5028(1997)016<2096:BAMRIT>2.3.CO;2

    Article  CAS  Google Scholar 

  • Baudrimont M, Lemaire-Gony S, Ribeyre F, Metivaud J, Boudou A (1997b) Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea). Comp Biochem Physiol 118C:361–367

    CAS  Google Scholar 

  • Baudrimont M, Andrés S, Metivaud J, Lapaquellerie Y, Ribeyre F, Maillet N, Latouche C, Boudou A (1999) Field transplantation of the freshwater bivalve Corbicula fluminea along a polymetallic contamination gradient (river Lot, France): II. Metallothionein response to metal exposure. Environ Toxicol Chem 18:2472–2477. doi:10.1897/1551-5028(1999)018<2472:FTOTFB>2.3.CO;2

    CAS  Google Scholar 

  • Baudrimont M, Andrès S, Durrieu G, Boudou A (2003) The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn. Aquat Toxicol 63:89–102. doi:10.1016/S0166-445X(02)00134-0

    Article  CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003a) Arsenic—a review. Part I. Occurrence, toxicity, speciation, mobility in the aqueous environment. Acta Hydrochim Hydrobiol 31:9–18. doi:10.1002/aheh.200390025

    CAS  Google Scholar 

  • Bissen M, Frimmel FH (2003b) Arsenic—a review. Part II. Oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 3:97–107. doi:10.1002/aheh.200300485

    Google Scholar 

  • Bryan GW, Langston WJ, Hummerstone LG, Burt GR (1985) A Guide to the assessment of heavy-metal contamination in estuaries using biological indicators. Mar Biol Assoc UK, Occasional Publication No. 4

  • Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367. doi:10.1111/j.1574-6976.1994.tb00145.x

    Article  CAS  Google Scholar 

  • Couillard Y, Campbell PGC, Tessier A (1993) Response of metallothionein concentrations in a freshwater bivalve (Anodonta grandis) along an environmental cadmium gradient. Mol Mar Biol Biotechnol 2:299–313

    Google Scholar 

  • De Kock WC, Kramer KJM (1994) Active biomonitoring (ABM) by translocation of bivalve molluscs. In: Kramer KJM (ed) Biomonitoring of coastal waters and estuaries. CRC Press, Boca Raton, FL, pp 51–84

    Google Scholar 

  • Diniz M, Santos HM, Costa PM, Peres I, Costa MH, Capelo JL (2007) Metallothionein responses in the Asiatic clam (Corbicula fluminea) after exposure to trivalent arsenic. Biomarkers 12:589–598. doi:10.1080/13547500701507701

    Article  CAS  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641. doi:10.1016/j.envint.2004.10.020

    Article  CAS  Google Scholar 

  • Feng Z, Xia Y, Tian D, Wu K, Schmitt M, Kwok RK (2001) DNA damage in buccal epithelial cells from individuals chronically exposed to arsenic via drinking water in Inner Mongolia, China. Anticancer Res 21:51–58

    CAS  Google Scholar 

  • Fraysse B, Baudin JP, Garnier-Laplace J, Adam C, Boudou A (2002) Effects of Cd and Zn waterborne exposure on the uptake and depuration of 57Co, 110mAg and 134Cs by the Asiatic clam (Corbicula fluminea) and the zebra mussel (Dreissena polymorpha)—whole organism study. Environ Poll 118:297–306. doi:10.1016/S0269-7491(01)00305-0

    Article  CAS  Google Scholar 

  • Hindmarsh JT (2000) Arsenic, its clinical and environmental significance. J Trace Elem Exp Med 13:165–172. doi:10.1002/(SICI)1520-670X(2000)13:1<165::AID-JTRA17>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Hossain F, Sivakumar B (2006) Spatial pattern of arsenic contamination in shallow tubewells of Bangladesh: regional geology and non-linear dynamics stochastic. Environ Res Risk Assess 20:66–76. doi:10.1007/s00477-005-0012-7

    Article  Google Scholar 

  • Inza B, Ribeyre F, Maury-Brachet R, Boudou A (1997) Tissue distribution of inorganic mercury, methylmercury and cadmium in the asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water column and sediment. Chemosphere 35:2817–2836. doi:10.1016/S0045-6535(97)00342-1

    Article  CAS  Google Scholar 

  • Jiang G, Gong Z, Li X-F, Cullen WR, Le XC (2003) Interaction of trivalent arsenicals with metallothionein. Chem Res Toxicol 16:873–880. doi:10.1021/tx034053g

    Article  CAS  Google Scholar 

  • Jonhs C, Luoma SN (1990) Arsenic in benthic bivalves of San Francisco Bay and the Sacramento/San Joaquin River. Sci Tot Environ 97(98):673–684. doi:10.1016/0048-9697(90)90268-Y

    Google Scholar 

  • Kaise T, Horiguchi Y, Fukui S, Shiomi K, Chino M, Kikuchi T (1992) Acute toxicity and metabolism of arsenocholine in mice. Appl Organomet Chem 6:369–373. doi:10.1002/aoc.590060410

    Article  CAS  Google Scholar 

  • Liao CM, Ling MP (2003) Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale-mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Arch Environ Contam Toxicol 45:264–272. doi:10.1007/s00244-003-0107-4

    Article  CAS  Google Scholar 

  • Lillie RD (1965) Histopathologic technic and practical histochemistry. McGraw-Hill, New York

    Google Scholar 

  • Luoma S, Rainbow P (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931. doi:10.1021/es048947e

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic around the world: a review. Talanta 58:201–235. doi:10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  • Martoja R, Martoja M (1967) Initiation aux tecniques de l’histologie animal. Masson, Paris

    Google Scholar 

  • McGeer JC, Brix KB, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A (2003) Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017–1037. doi:10.1897/1551-5028(2003)022<1017:IRBBFA>2.0.CO;2

    Article  CAS  Google Scholar 

  • Mouthon J (1981) Sur la presence en France et au Portugal de Corbicula (Bivalvia, Corbiculidae) originaire d’Asie. Basteria 45:109–116

    Google Scholar 

  • Ngu TT, Stillman MJ (2006) Arsenic binding to human metallothionein. J Am Chem Soc 128:12473–12483. doi:10.1021/ja062914c

    Article  CAS  Google Scholar 

  • Orescanin V, Lovrencic I, Mikelic L, Barisic D, Matasin Z, Lulic S, Pezelj D (2006) Biomonitoring of heavy metals and arsenic on the east coast of the Middle Adriatic Sea using Mytilus galloprovincialis. Nuc Instr Meth Phys Res B 245:495–500. doi:10.1016/j.nimb.2005.11.050

    Article  CAS  Google Scholar 

  • Palecek E, Pechan Z (1971) Estimation of nanogram quantities of proteins by pulse polarographic techniques. Anal Biochem 42:59–71. doi:10.1016/0003-2697(71)90010-8

    Article  CAS  Google Scholar 

  • Ravera O (2001) Monitoring of the aquatic environment by species accumulator of pollutants: a review. J Limnol 60S1:63–78

    Google Scholar 

  • Roesijadi G (1996) Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol 113C:117–123

    CAS  Google Scholar 

  • Romero-Isart N, Vašák M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396. doi:10.1016/S0162-0134(01)00347-6

    Article  CAS  Google Scholar 

  • Santos HM, Diniz M, Costa PM, Peres I, Costa MH, Alves S, Capelo JL (2007) Toxicological effects and bioaccumulation in the freshwater clam (Corbicula fluminea) following exposure to trivalent arsenic. Environ Toxicol 22:502–509. doi:10.1002/tox.20303

    Article  CAS  Google Scholar 

  • Sebesvari Z, Ettwig F, Emons H (2005) Biomonitoring of tin and arsenic in different compartments of a limnic ecosystem with emphasis on Corbicula fluminea and Dikerogammarus villosus. J Environ Monit 7:203–207. doi:10.1039/b410717a

    Article  CAS  Google Scholar 

  • Sheskin FJ (2000) Handbook of parametric and nonparametric statistical procedures, 2nd edn. Chapman & Hall, Boca Raton, FL

    Google Scholar 

  • Thompson JAJ, Cosson RP (1984) An improved electrochemical method for the quantification of metallothioneins in marine organisms. Mar Environ Res 11:137–152. doi:10.1016/0141-1136(84)90027-8

    Article  CAS  Google Scholar 

  • Toyama M, Yamashita M, Hirayama N, Murooka Y (2002) Interactions of arsenic with human metallothionein-2. J Biochem Tokyo 132:217–221

    CAS  Google Scholar 

  • Valette-Silver NJ, Riedel GF, Crecelius EA, Windom H, Smith RG, Dolvin SS (1999) Elevated arsenic concentrations in bivalves from the southeast coasts of the USA. Mar Environ Res 48:311–333. doi:10.1016/S0141-1136(99)00057-4

    Article  CAS  Google Scholar 

  • Viarengo A, Nott JA (1993) Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comp Biochem Phys 104C:355–372

    Article  CAS  Google Scholar 

  • Viarengo A, Moore MN, Mancinelli G, Mazzucotelli A, Pipe RK, Farrar SV (1987) Metallothioneins and lysosomes in metal toxicity and accumulation in marine mussels: the effect of cadmium in the presence and absence of phenanthrene. Mar Biol 94:251–257. doi:10.1007/BF00392937

    Article  CAS  Google Scholar 

  • Viarengo A, Burlando B, Dondero F, Marro A, Fabbri R (1999) Metallothionein as a tool in biomonitoring programmes. Biomarkers 4:455–466. doi:10.1080/135475099230615

    Article  CAS  Google Scholar 

Download references

Acknowledgment

P. M. Costa is supported by a FCT (Portuguese Foundation for Science and Technology) Ph.D. grant (ref. SFRH/BD/28465/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Costa.

Additional information

Pedro M. Costa, Hugo M. Santos and Mário S. Diniz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, P.M., Santos, H.M., Peres, I. et al. Toxicokinetics of Waterborne Trivalent Arsenic in the Freshwater Bivalve Corbicula fluminea . Arch Environ Contam Toxicol 57, 338–347 (2009). https://doi.org/10.1007/s00244-008-9267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9267-6

Keywords

Navigation