Skip to main content
Log in

Accumulation and Effects of Nodularin from a Single and Repeated Oral Doses of Cyanobacterium Nodularia spumigena on Flounder (Platichthys flesus L.)

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Nodularin (NODLN) is a cyclic pentapeptide hepatotoxin produced by the cyanobacterium Nodularia spumigena, which occurs regularly in the Baltic Sea during the summer season. In this study flounder (Platichthys flesus L.) was orally exposed to NODLN either as a single dose or as three repeated doses 3 days apart. Liver and bile samples of the fish were taken 4 days after the last dose. Liver glutathione-S-transferase (GST) activity was also measured and the histopathology of the liver was investigated. The liver of the exposed fish was analyzed by liquid chromatography-mass spectrometry for NODLN concentration. The content of NODLN-like compounds in the bile was analyzed by enzyme-linked immunosorbent assay. NODLN exposure caused slightly incoherent liver architecture and degenerative cell changes in both groups. The mean liver GST activity was significantly higher in the repeatedly dosed flounders than in the singly dosed flounders or in the control. In conclusion, the significantly lower NODLN concentration and the increased GST activity in the liver of the repeatedly dosed flounders compared to the singly dosed flounders suggest that NODLN is rapidly detoxificated. The absence of NODLN glutathione conjugates and the low concentrations of NODLN-like compounds in the bile indicate that detoxification products disintegrate or they are rapidly excreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beattie KA, Ressler J, Wiegand C, Krause E, Codd GA, Steinberg CEW, Pflugmacher S (2003) Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina. Aquat Toxicol 62:219–226. doi:10.1016/S0166-445X(02)00091-7

    Article  CAS  Google Scholar 

  • Bonsdorff E, Norkko A, Boström C (1995) Recruitment and population maintenance of the bivalve Macoma balthica (L.)—factors affecting settling success and early survival on shallow sandy bottoms. In: Elefheriou A, Ansell AD, Smith CJ (eds) Biology and ecology of shallow coastal waters. Proceedings of the 28th EMBS Symbosium. Olsen & Olsen, Fredensborg, Denmark, pp 253–260

  • Bucke D (1972) Some histological techniques applicable to fish tissues. In: Mawdesley-Thomas LE (ed) Diseases of fish. Academic Press, London, pp 153–189

    Google Scholar 

  • Bury NR, Newlands AD, Eddy FB, Codd GA (1998) In vivo and in vitro intestinal transport of 3H-microcystin-LR, a cyanobacterial toxin, in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 42:139–148. doi:10.1016/S0166-445X(98)00041-1

    Article  CAS  Google Scholar 

  • Carmichael WW (1997) The cyanotoxins. Adv Bot Res 27:211–256. doi:10.1016/S0065-2296(08)60282-7

    Article  CAS  Google Scholar 

  • Carmichael WW, Eschedor JT, Patterson GM, Moore RE (1988) Toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand. Appl Environ Microb 54:2257–2263

    CAS  Google Scholar 

  • Dybkaer R (2001) Unit “katal” for catalytic activity (IUPAC Technical Report). Pure Appl Chem 73:927–931. doi:10.1351/pac200173060927

    Article  CAS  Google Scholar 

  • Eriksson JE, Meriluoto JAO, Kujari HP, Osterlund K, Fagerlund K, Hallbom L (1988) Preliminary characterization of a toxin isolated from the cyanobacterium Nodularia spumigena. Toxicon 26:161–166. doi:10.1016/0041-0101(88)90168-7

    Article  CAS  Google Scholar 

  • Falconer IR, Jackson ARB, Langley J, Runnegar MT (1981) Liver pathology in mice in poisoning by the blue-green alga Microcystis aeruginosa. Aust J Biol Sci 34:179–187

    CAS  Google Scholar 

  • Fischer WJ, Hitzfeld BC, Tencalla F, Eriksson JE, Mikhailov A, Dietrich DR (2000) Microcystin-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (Oncorhynchus mykiss). Toxicol Sci 54:365–373. doi:10.1093/toxsci/54.2.365

    Article  CAS  Google Scholar 

  • Fladmark KE, Serres MH, Larsen NL, Yasumoto T, Aune T, Doskeland SO (1998) Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon 36:1101–1114. doi:10.1016/S0041-0101(98)00083-X

    Article  CAS  Google Scholar 

  • Fu J, Xie P (2006) The acute effects of microcystin LR on the transcription of nine glutathione S-transferase genes in common carp Cyprinus carpio L. Aquat Toxicol 80:261–266. doi:10.1016/j.aquatox.2006.09.003

    Article  CAS  Google Scholar 

  • Kankaanpää HT, Sipiä VO, Kuparinen JS, Ott JL, Carmichael WW (2001) Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water-bloom in the western Gulf of Finland, Baltic Sea, in August 1999. Phycologia 40:268–274

    Google Scholar 

  • Kankaanpää H, Vuorinen PJ, Sipiä V, Keinänen M (2002) Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) exposed orally to Nodularia spumigena under laboratory conditions. Aquat Toxicol 61:155–168. doi:0.1016/S0166-445X(02)00054-1

    Article  Google Scholar 

  • Kankaanpää H, Turunen AK, Karlsson K, Bylund G, Meriluoto J, Sipiä V (2005) Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002. Chemosphere 59:1091–1097. doi:10.1016/j.chemosphere.2004.12.010

    Article  CAS  Google Scholar 

  • Karlsson K, Sipiä V, Krause E, Meriluoto J, Pflugmacher S (2003a) Mass spectrometric detection and quantification of nodularin-R in flounder livers. Environ Toxicol 18:284–288. doi:10.1002/tox.10126

    Article  CAS  Google Scholar 

  • Karlsson K, Sipiä V, Kankaanpää H, Meriluoto J (2003b) Mass spectrometric detection of nodularin and desmethylnodularin in mussels and flounders. J Chromatogr B 784:243–253. doi:10.1016/S1570-0232(02)00802-4

    Article  CAS  Google Scholar 

  • Kiviranta J, Saario E, Sivonen K, Niemelä SI (1990) Mouse oral toxicity of the cyanobacterium Nodularia spumigena and inhibition of hepatotoxicity by hydrocortisone. Acta Pharm Fenn 99:69–76

    CAS  Google Scholar 

  • Kondo F, Matsumoto H, Yamada S, Ishikawa N, Ito E, Nagata S, Ueno Y, Suzuki M, Harada K-I (1996) Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chem Res Toxicol 9:1355–1359. doi:10.1021/tx960085a

    Article  CAS  Google Scholar 

  • Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Norweg Inst Water Res B 11/69:1–5

    Google Scholar 

  • Kuiper-Goodman T, Falconer I, Fitzerald J (1999) Human health aspects. In: Chorus I, Bartman J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. WHO, E & FN Spon, London, pp 126–134

    Google Scholar 

  • Lee JS, Yanagi T, Kenma R, Yasumoto T (1987) Fluorometric determination of diarrhetic shellfish toxins by high-performance liquid chromatography. Agr Biol Chem 51:877–881

    CAS  Google Scholar 

  • Lehtimäki, J (2000) Characterization of cyanobacterial strains originating from the Baltic Sea with emphasis on Nodularia and its toxin, nodularin. PhD thesis. Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland, pp 79

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25:72–86. doi:10.1897/05-029R.1

    Article  CAS  Google Scholar 

  • Malbrouck C, Trausch G, Devos P, Kestemont P (2003) Hepatic accumulation and effects of microcystin-LR on juvenile goldfish Carassius auratus L. Comp Biochem Phys C 135:39–48

    Article  CAS  Google Scholar 

  • Metcalf JS, Beattie KA, Pflugmacher S, Codd GA (2000) Immuno-crossreactivity and toxicity assessment of conjugation products of the cyanobacterial toxin, microcystin-LR. FEMS Microbiol Lett 189:155–158. doi:10.1111/j.1574-6968.2000.tb09222.x

    Article  CAS  Google Scholar 

  • Moreno IM, Molina R, Jos A, Pico Y, Camean AM (2005) Determination of microcystins in fish by solvent extraction and liquid chromatography. J Chromatogr A 1080:199–203. doi:10.1016/j.chroma.2005.05.029

    Article  CAS  Google Scholar 

  • Ohta T, Sueoka E, Iida N, Komori A, Suganuma M, Nishiwaki R, Tatematsu M, Kim SJ, Carmichael WW, Fujiki H (1994) Nodularin, a potent inhibitor of protein phosphatase-1 and phosphatase-2A, is a new environmental carcinogen in male F344 rat-liver. Cancer Res 54:6402–6406

    CAS  Google Scholar 

  • Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA, Steinberg CEW (1998) Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochim Biophys Acta 1425:527–533

    CAS  Google Scholar 

  • Råbergh CMI, Bylund G, Eriksson JE (1991) Histopathological effects of microcystin-LR, a cyclic peptide toxin from the cyanobacterium (blue-green alga) Microcystis aeruginosa, on common carp (Cyprinus carpio L.). Aquat Toxicol 20:131–145. doi:10.1016/0166-445X(91)90012-X

    Article  Google Scholar 

  • Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan PE, Beasley VR, Dahlem AM, Carmichael WW (1988) Nodularin, microcystin, and the configuration of adda. J Am Chem Soc 110:8557–8558. doi:10.1021/ja00233a049

    Article  CAS  Google Scholar 

  • Runnegar MT, Falconer IR, Silver J (1981) Deformation of isolated rat hepatocytes by a peptide hepatotoxin from the blue-green alga Microcystis aeruginosa. Arch Pharmacol 317:268–272. doi:10.1007/BF00503829

    Article  CAS  Google Scholar 

  • Sahin A, Tencalla FG, Dietrich DR, Naegeli H (1996) Biliary excretion of biochemically active cyanobacteria (blue-green algae) hepatotoxins in fish. Toxicology 106:123–130. doi:10.1016/0300-483X(95)03173-D

    Article  CAS  Google Scholar 

  • SAS Institute Inc (1988) SAS/STAT user’s guide, release 6.03 edition. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Sender S, Bottcher K, Cetin Y, Gros G (1999) Carbonic anhydrase in the gills of seawater- and freshwater-acclimated flounders Platichthys flesus: purification, characterization, and immunohistochemical localization. J Histochem Cytochem 47:43–50

    CAS  Google Scholar 

  • Sipiä V, Kankaanpää H, Lahti K, Carmichael WW, Meriluoto J (2001a) Detection of nodularin in flounders and cod from the Baltic Sea. Environ Toxicol 16:121–126. doi:10.1002/tox.1015

    Article  Google Scholar 

  • Sipiä VO, Kankaanpää HT, Flinkman J, Lahti K, Meriluoto JAO (2001b) Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environ Toxicol 16:330–336. doi:10.1002/tox.1040

    Article  Google Scholar 

  • Sipiä VO, Kankaanpää HT, Pflugmacher S, Flinkman J, Furey A, James KJ (2002) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea. Ecotoxicol Environ Saf 53:305–311. doi:10.1006/eesa.2002.2222

    Article  CAS  Google Scholar 

  • Sipiä VO, Karlsson KA, Meriluoto JAO, Kankaanpää HT (2004) Eiders (Somateria mollissima) obtain nodularin, a cyanobacterial hepatotoxin, in Baltic Sea food web. Environ Toxicol Chem 23:1256–1260. doi:10.1897/03-209)

    Article  Google Scholar 

  • Sipiä VO, Sjovall O, Valtonen T, Barnaby DL, Codd GA, Metcalf JS, Kilpi M, Mustonen O, Meriluoto JAO (2006) Analysis of nodularin-R in eider (Somateria mollissima), roach (Rutilus rutilus L.), and flounder (Platichthys flesus L.) liver and muscle samples from the western Gulf of Finland, northern Baltic Sea. Environ Toxicol Chem 25:2834–2839. doi:10.1897/06-185R.1

    Article  Google Scholar 

  • Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart KL, Kiviranta J, Niemela SI (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl Environ Microb 55:1990–1995

    CAS  Google Scholar 

  • Takai A, Bialojan C, Troschka M, Ruegg JC (1987) Smooth-muscle myosin phosphatase inhibition and force enhancement by black sponge toxin. FEBS Lett 217:81–84. doi:10.1016/0014-5793(87)81247-4

    Article  CAS  Google Scholar 

  • Taylor J, Whittamore J, Wilson R, Grosell M (2007) Postprandial acid-base balance and ion regulation in freshwater and seawater-acclimated European flounder, Platichthys flesus. J Comp Physiol B 177:597–608. doi:10.1007/s00360-007-0158-3

    Article  CAS  Google Scholar 

  • Wiegand C, Pflugmacher S, Oberemm A, Meems N, Beattie KA, Steinberg CEW, Codd GA (1999) Uptake and effects of microcystin-LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ Toxicol 14:89–95. doi:10.1002/(SICI)1522-7278(199902)14:1<89::AID-TOX12>3.0.CO;2-7

    Google Scholar 

  • Williams DE, Craig M, Dawe SC, Kent ML, Andersen RJ, Holmes CFB (1997a) 14C-labeled microcystin-LR administered to Atlantic salmon via intraperitoneal injection provides in vivo evidence for covalent binding of microcystin-LR in salmon livers. Toxicon 35:985–989. doi:10.1016/S0041-0101(96)00196-1)

    Article  CAS  Google Scholar 

  • Williams DE, Craig M, Dawe SC, Kent ML, Holmes CFB, Andersen RJ (1997b) Evidence for a covalently bound form of microcystin-LR in salmon liver and dungeness crab larvae. Chem Res Toxicol 10:463–469. doi:10.1021/tx9601519

    Article  CAS  Google Scholar 

  • Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H (1990) Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol 116:609–614. doi:10.1007/BF01637082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Johanna Lindholm, M.Sc., is thanked for invaluable help with dosing and sampling of the flounder, and Professor Kaarina Sivonen (Department of Applied Chemistry and Microbiology, University of Helsinki) is acknowledged for delivering Nodularia spumigena strain AV1. The Academy of Finland, Research Council for Biosciences and Environment, is thanked for financial support to V.S. (project 80130) and to K.K. and J.M. (decision numbers 47664 and 108947). K.K. also acknowledges support from the National Graduate School of Informational and Structural Biology. Funding from the ERTDI Programme 2000–2006 Phase III to O.A., financed by the Irish Government and administered by the Environmental Protection Agency (EPA), is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka J. Vuorinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuorinen, P.J., Sipiä, V.O., Karlsson, K. et al. Accumulation and Effects of Nodularin from a Single and Repeated Oral Doses of Cyanobacterium Nodularia spumigena on Flounder (Platichthys flesus L.). Arch Environ Contam Toxicol 57, 164–173 (2009). https://doi.org/10.1007/s00244-008-9258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9258-7

Keywords

Navigation