Skip to main content
Log in

Oxidative Transformation of 17β-estradiol by MnO2 in Aqueous Solution

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

17β-Estradiol (E2) is known as a natural endocrine disruptor and often found in municipal sewage. Batch experiments were conducted to assess the oxidative transformation of E2 in aqueous solutions by MnO2 and the probable degradation pathway. The results suggested that E2 could be degraded by MnO2, and the oxidation reaction deviated from pseudo-first-order kinetics due to the accumulation of reaction products in mineral surfaces and a gradual change of the surface site distribution toward less reactive sites. MnO2 dosage had a positive effect on oxidative transformation of E2, and both the initial reaction rate and the adsorption of E2 to oxide surfaces increased as the pH decreased. Two products, estrone and 2-hydroxyestradiol, were detected by gas chromatography coupled with mass spectrometry, and the probable degradation pathway was proposed. Results suggest that E2 can be oxidatively transformed by MnO2, which will provide some new insights into the interaction of estrogens with manganese oxides in natural soils and sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashby J, Houthoff E, Kennedy SJ, Stevens J, Bars R, Jekat FW, Campbell P, Miller J, Carpanini FM, Randall GL (1997) The challenge posed by endocrine-disrupting chemicals. Environ Health Perspect 105:164–169. doi:10.2307/3433233

    Article  CAS  Google Scholar 

  • Baronti C, Curini R, D’Ascenzo G, Di Corcia A, Gentili A, Samperi R (2000) Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol 34:5059–5066. doi:10.1021/es001359q

    Article  CAS  Google Scholar 

  • Belfroid AC, Van HA, Vethaak AD, Schafer AJ, Rijs GBJ, Wegener J, Cofino WP (1999) Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and wastewater in the Netherlands. Sci Total Environ 225:101–108. doi:10.1016/S0048-9697(98)00336-2

    Article  CAS  Google Scholar 

  • Bila D, Montalväo AF, Azevedo DA, Dezotti M (2007) Estrogenic activity removal of 17β-estradiol by ozonation and identification of by-products. Chemosphere 69:736–746. doi:10.1016/j.chemosphere.2007.05.016

    Article  CAS  Google Scholar 

  • Colucci MS, Bork H, Topp E (2001) Persistence of estrogenic hormones in agricultural soils: I. 17β-estradiol and estrone. J Environ Qual 30:2070–2076

    Article  CAS  Google Scholar 

  • de Rudder J, Wiele TV, Dhooge W, Comhaire F, Verstraete W (2004) Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2). Water Res 38:184–192. doi:10.1016/j.watres.2003.09.018

    Article  CAS  Google Scholar 

  • Driehaus W, Seith R, Jekel M (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Res 29:297–305. doi:10.1016/0043-1354(94)E0089-O

    Article  CAS  Google Scholar 

  • Falconer IR, Chapman HF, Moore MR, Ranmuthugala G (2006) Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ Toxicol 21:181–191. doi:10.1002/tox.20172

    Article  CAS  Google Scholar 

  • Fendorf SE, Zasoski RJ (1992) Chromium(III) oxidation by δ-MnO2. 1. Characterization. Environ Sci Technol 26:79–85. doi:10.1021/es00025a006

    Article  CAS  Google Scholar 

  • Huber MM, Ternes TA, von Gunten U (2004) Removal of estrogenic activity and formation of oxidation products during ozonation of 17α-ethinylestradiol. Environ Sci Technol 38:5177–5186. doi:10.1021/es035205x

    Article  CAS  Google Scholar 

  • Johnson AC, Belfroid A, Di Corcia A (2000) Estimating estrogen input to activated sludge treatment works and observations on their removal from effluent. Sci Total Environ 256:163–173. doi:10.1016/S0048-9697(00)00481-2

    Article  CAS  Google Scholar 

  • Kolodziej EP, Gray JL, Sedlak DL (2003) Quantification of steroid hormones with pheromonal properties in municipal wastewater effluent. Environ Toxicol Chem 22:2622–2629. doi:10.1897/03-42

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MF, Thurman EM, Zaugg SD, Barber LB, Buxon HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211. doi:10.1021/es011055j

    Article  CAS  Google Scholar 

  • Lai KM, Scrimshaw MD, Lester JN (2002) Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. Sci Total Environ 289:159–168. doi:10.1016/S0048-9697(01)01036-1

    Article  CAS  Google Scholar 

  • Lee HB, Liu D (2002) Degradation of 17β-estradiol and its metabolites by sewage bacteria. Water Air Soil Pollut 134:353–368. doi:10.1023/A:1014117329403

    Article  CAS  Google Scholar 

  • Li FB, Liu CS, Liang CH, Li XZ, Zhang LJ (2008) The oxidative degradation of 2-mercaptobenzothiazole at the interface of ß-MnO2 and water. J Hazard Mater 154:1098–1105. doi:10.1016/j.jhazmat.2007.11.015

    Article  CAS  Google Scholar 

  • Murray JW (1974) The surface chemistry of hydrous manganese oxides. J Colloid Interface Sci 46:357–371. doi:10.1016/0021-9797(74)90045-9

    Article  CAS  Google Scholar 

  • Nico PS, Zasoski RJ (2001) Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO2. Environ Sci Technol 35:3338–3343. doi:10.1021/es001848q

    Article  CAS  Google Scholar 

  • Nomiyama K, Tanizaki T, Koga T, Arizono K, Shinohara R (2007) Oxidative degradation of BPA using TiO2 in water, and transition of estrogenic activity in the degradation pathways. Arch Environ Contam Toxicol 52:8–15. doi:10.1007/s00244-005-0204-7

    Article  CAS  Google Scholar 

  • Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285. doi:10.1080/02757549408038554

    Article  CAS  Google Scholar 

  • Rennert T, Pohlmeier A, Mansfeldt T (2005) Oxidation of ferrocyanide by birnessite. Environ Sci Technol 39:821–825. doi:10.1021/es040069x

    Article  CAS  Google Scholar 

  • Shi JH, Fujisawa S, Nakai S, Hosomi M (2004) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res 38:2323–2330. doi:10.1016/j.watres.2004.02.022

    Article  CAS  Google Scholar 

  • Smrmah AK, Northcott GL, Leusch FDL, Tremblay LA (2006) A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand. Sci Total Environ 335:135–144. doi:10.1016/j.scitotenv.2005.02.027

    Google Scholar 

  • Stasinakis AS, Gatidou G, Mamais D, Thomaidis NS, Lekkas TD (2008) Occurrence and fate of endocrine disrupters in Greek sewage treatment plants. Water Res 42:1796–1804. doi:10.1016/j.watres.2007.11.003

    Article  CAS  Google Scholar 

  • Stone AT (1987) Reductive dissolution of manganese (III/IV) oxides by substituted phenols. Environ Sci Technol 21:979–988. doi:10.1021/es50001a011

    Article  CAS  Google Scholar 

  • Tanaka H, Sato C, Komori K, Yakou Y, Tamamoto H, Miyamoto N, Higashitani T (2003) Occurrence of endocrine disruptors in sewage and their behavior in sewage treatment plants in Japan. Environ Sci 10(1):1–24

    CAS  Google Scholar 

  • Ternes TA, Stumpf M, Mueller J, Haberer K, Wilken RD, Servos M (1999) Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90. doi:10.1016/S0048-9697(98)00334-9

    Article  CAS  Google Scholar 

  • Tyler CR, Jobling S, Sumpter JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28:319–361. doi:10.1080/10408449891344236

    Article  CAS  Google Scholar 

  • Van Emmerik T, Angove MJ, Johnson BB, Wells JD, Fernandes MB (2003) Sorption of 17β-estradiol onto selected soil minerals. J Colloid Interface Sci 266:33–39. doi:10.1016/S0021-9797(03)00597-6

    Article  CAS  Google Scholar 

  • Zhang H, Huang CH (2003) Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ Sci Technol 37:2421–2430. doi:10.1021/es026190q

    Article  CAS  Google Scholar 

  • Zhang H, Huang CH (2005a) Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ Sci Technol 39:4474–4483. doi:10.1021/es048166d

    Article  CAS  Google Scholar 

  • Zhang H, Huang CH (2005b) Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide. Environ Sci Technol 39:593–601. doi:10.1021/es048753z

    Article  CAS  Google Scholar 

  • Zhang ZL, Hibberd A, Zhou JZ (2006) Optimisation of derivatisation for the analysis of estrogenic compounds in water by solid-phase extraction gas chromatography-mass spectrometry. Anal Chem Acta 577:52–61. doi:10.1016/j.aca.2006.06.029

    Article  CAS  Google Scholar 

  • Zhang Y, Zhou JL, Ning B (2007) Photodegradation of estrone and 17β-estradiol in water. Water Res 41:19–26. doi:10.1016/j.watres.2006.09.020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Shuang Song (Zhejiang University of Technology) for help with δ-MnO2 synthesis. This work was funded by Zhejiang University Province Natural Science Foundation of China (Grant No. Y506237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmeng Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Huang, C., Chen, J. et al. Oxidative Transformation of 17β-estradiol by MnO2 in Aqueous Solution. Arch Environ Contam Toxicol 57, 221–229 (2009). https://doi.org/10.1007/s00244-008-9257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9257-8

Keywords

Navigation