Skip to main content

Advertisement

Log in

Polycyclic Aromatic Hydrocarbon Contamination in South Carolina Salt Marsh-Tidal Creek Systems: Relationships Among Sediments, Biota, and Watershed Land Use

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Sediments and biota from 11 tidal creeks were sampled and classified into forested, suburban, and urban/industrial watershed land-use categories. Total PAH levels (∑PAH16) in sediments were significantly higher in urban/industrialized creeks (5,795 ± 1,173 ng/g) compared to suburban (793 ± 131 ng/g) and forested (238 ± 34 ng/g) creeks. No differences in ∑PAH16 levels among land-use classifications were found for either oligochaetes (Monopylephorus rubroniveus) or grass shrimp (Palaemonetes pugio). However, ∑PAH16 levels in grass shrimp were related to sediment ∑PAH16 levels and ∑PAH16 levels in oligochaetes and grass shrimp eggs were related to impervious cover in the watershed. Diagnostic ratios suggest that the primary sources of PAH in suburban and urban/industrialized creeks are pyrogenic. Carcinogenic PAH contents of sediments and biota were related to impervious cover. While human exposures to these sediment-associated carcinogens were not assessed, levels of several carcinogenic PAHs in sediments of urban/industrial tidal creeks were above the levels that represent an increased cancer risk in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashley JTF, Baker JE (1999) Hydrophobic organic contaminants in surficial sediment of Baltimore Harbor: inventories and sources. Environ Toxicol Chem 18:838–849. doi:10.1897/1551-5028(1999)018<0838:HOCISS>2.3.CO;2

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Michon Q, Garrigues P, Burgeot T, Bellocq J (1998) Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuary Coast Shelf Sci 47:77–90. doi:10.1006/ecss.1998.0337

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Guarrigues P, Dizer H, Hansen PD (1999) Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: occurrence, bioavailability and seasonal variations. Mar Environ Res 47:17–47. doi:10.1016/S0141-1136(98)00105-6

    Article  CAS  Google Scholar 

  • Bouché ML, Risbourg SB, Arsac F, Vernet G (1999) An original decontamination process developed by the aquatic oligochaete Tubifex tubifex exposed to copper and lead. Aquat Toxicol 45:9–17. doi:10.1016/S0166-445X(98)00091-5

    Article  Google Scholar 

  • Budzinski H, Jones I, Bellocq J, Pierard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in The Gironde Estuary. Mar Chem 58:85–97. doi:10.1016/S0304-4203(97)00028-5

    Article  CAS  Google Scholar 

  • Cardellicchio N, Buccolieri A, Giandomenico S, Lopez L, Pizzulli F, Spada L (2007) Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccoloin Taranto (Ionian Sea, Southern Italy). Mar Pollut Bull 55:451–458. doi:10.1016/j.marpolbul.2007.09.007

    Article  CAS  Google Scholar 

  • Crossett KM, Culliton TJ, Wiley PC, Goodspeed TR (2004) Population trends along the coastal United States: 1980–2008. Coastal trends report series. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Springs, MD

  • De Luca G, Furesi A, Leardi R, Micera G, Panzanelli A, Piu PC, Sanna G (2004) Polycyclic aromatic hydrocarbons (PAHs) assessment in the sediments of the Porto Torres Harbor (Northern Sardinia, Italy). Mar Chem 86:15–32. doi:10.1016/j.marchem.2003.11.001

    Article  Google Scholar 

  • De Luca G, Furesi A, Leardi R, Micera G, Panzanelli A, Piu PC, Pilo MI, Spano N, Sanna G (2005) Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (northern Sardinia, Italy). Mar Pollut Bull 50:223–1232

    Google Scholar 

  • Gillett DJ, Holland AF, Sanger DM (2007) Ecology of oligochaetes: monthly variation in community composition and environmental characteristics of two South Carolina tidal creeks. Estuaries Coasts 30:238–252

    Google Scholar 

  • Glas PS, Courtney LA, Rayburn JR, Fisher WS (1997) Embryonic coat of the grass shrimp Palaemonetes pugio. Biol Bull 192:231–242. doi:10.2307/1542717

    Article  Google Scholar 

  • Gschweng PM, Hites RA (1981) Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim Cosmochim Acta 45:2359–2367. doi:10.1016/0016-7037(81)90089-2

    Article  Google Scholar 

  • Hettler WF (1989) Nekton use of regularly-flooded saltmarsh cordgrass habitat in North Carolina, USA. Mar Ecol Progr 56:111–118. doi:10.3354/meps056111

    Article  Google Scholar 

  • Holland AF, Sanger DM, Gawle CP, Lerberg SB, Santiago MS, Riekerk GHM, Zimmerman LE, Scott GI (2004) Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. J Exp Mar Biol Ecol 298:151–178. doi:10.1016/S0022-0981(03)00357-5

    Article  Google Scholar 

  • Huggett RJ, deFur PO, Bieri RH (1988) Organic compounds in Chesapeake Bay sediments. Mar Pollut Bull 19:454–458. doi:10.1016/0025-326X(88)90401-8

    Article  CAS  Google Scholar 

  • Jager T (2004) Modeling ingestion as an exposure route for organic chemicals in earthworms (Oligochaeta). Ecotoxicol Environ Saf 57:30–38. doi:10.1016/j.ecoenv.2003.08.013

    Article  CAS  Google Scholar 

  • Kayali-Sayadi MN, Rubio-Barroso S, García-Iranzo R, Polo-Díez LM (2000) Determination of selected polycyclic aromatic hydrocarbons in toasted bread by supercritical fluid extraction and HPLC with fluorimetric detection. J Liq Chrom Relat Tech 23:1913–1925. doi:10.1081/JLC-100100462

    Article  CAS  Google Scholar 

  • Lee RF, Maruya KA, Bulski K (2004) Exposure of grass shrimp to sediments receiving highway runoff: effects on reproduction and DNA. Mar Environ Res 58:713–717. doi:10.1016/j.marenvres.2004.03.020

    Article  CAS  Google Scholar 

  • Lerberg SB, Holland AF, Sanger DM (2000) Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 23:838–853. doi:10.2307/1353001

    Article  CAS  Google Scholar 

  • Long ER, MacDonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97. doi:10.1007/BF02472006

    Article  Google Scholar 

  • Magi E, Bianco R, Ianni C, Carro MD (2002) Distribution of polycyclic aromatic hydrocarbons in the sediment of the Adriatic Sea. Environ Pollut 119:91–98. doi:10.1016/S0269-7491(01)00321-9

    Article  CAS  Google Scholar 

  • Mallin MA, Lewitus AJ (2004) The importance of tidal creek ecosystems. J Exp Mar Biol Ecol 298:145–149. doi:10.1016/S0022-0981(03)00356-3

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. MJM Software Design, Gleneden Beach

  • Milligan MR (1996) Identification manual for the aquatic oligochaetea of Florida. II. Estuarine and nearshore marine oligochaetes. Bureau of Water Resources Protection, Florida Department of Environmental Protection, Tallahassee

    Google Scholar 

  • Neff JM, Scott SA, Gunster DG (2005) Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integr Environ Assess Manage 1:22–33. doi:10.1897/IEAM_2004a-016.1

    Article  CAS  Google Scholar 

  • Olsen CR, Cutshall NH, Larsen IL (1982) Pollutant-particle associations and dynamics in coastal marine environments: a review. Mar Chem 11:501–533. doi:10.1016/0304-4203(82)90001-9

    Article  CAS  Google Scholar 

  • Plumb RH (1981) Procedures for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-81-1. U.S. Army Corps of Engineers, U.S. Army Waterways Experiment Station, Vicksburg

  • Ross SW (2003) The relative value of different estuarine nursery areas in North Carolina for transient juvenile marine fishes. Fish Bull 101:384–404

    Google Scholar 

  • Sanger DM (1998) Physical, chemical and biological environmental quality of tidal creeks and salt marshes in South Carolina estuaries. Ph.D. Dissertation, University of South Carolina, p 478

  • Sanger DM, Holland AF, Scott GI (1999a) Tidal creek and salt marsh sediments in South Carolina coastal estuaries. I. Distribution of trace metals. Arch Environ Contam Toxicol 37:445–457. doi:10.1007/s002449900539

    Article  CAS  Google Scholar 

  • Sanger DM, Holland AF, Scott GI (1999b) Tidal creek and salt marsh sediments in South Carolina coastal estuaries. II. Distribution of organic contaminants. Arch Environ Contam Toxicol 37:458–471. doi:10.1007/s002449900540

    Article  CAS  Google Scholar 

  • Scott GI, Fulton MH, Crosby M, Key PB, Daugomah JW, Waldren J, Strozier ES, Louden C, Chandler GT, Bidleman TF, Jackson K, Hampton T, Huffman T, Schulz A, Bradford M (1992) Agricultural insecticide runoff effects on estuarine organisms; correlating laboratory and field toxicity test, ecophysiology bioassays and ecotoxicological biomonitoring. Final Report. USEPA, Gulf Breeze

  • Sheedy BR, Mattson VR, Cox JS, Kosian PA, Phipps GL, Ankley GT (1998) Bioconcentration of polycyclic aromatic hydrocarbons by the freshwater oligochaete Lumbriculus variegatus. Chemosphere 36:3061–3070. doi:10.1016/S0045-6535(98)00007-1

    Article  CAS  Google Scholar 

  • Silverman M, Strange W, Lipscombe T (2004) The distribution of composite measurements: how to be certain of the uncertainties in what we measure. Am J Physiol 72:1068–1081. doi:10.1119/1.1738426

    Article  CAS  Google Scholar 

  • Smucker SJ (1998) Region IX preliminary remediation goals (PRGs). Environmental Protection Agency, Region IX. www.epa.gov/region09/waste/sfund/prg/intro.htm

  • Soclo HH, Garrigues P, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40:387–396. doi:10.1016/S0025-326X(99)00200-3

    Article  CAS  Google Scholar 

  • Sun FS, Littlejohn D, Gibson MD (1998) Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection. Anal Chim Acta 364:1–11. doi:10.1016/S0003-2670(98)00186-X

    Article  CAS  Google Scholar 

  • USEPA (2004) User’s guide and background technical document for USEPA Region IX’s preliminary remediation goals table. http://www.epa.gov/Region9/waste/sfund/prg/whatsnew.htm

  • Vidal DE, Horne AJ (2003) Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei II: autotomy as a novel form of protection. Arch Environ Contam Toxicol 45:462–467. doi:10.1007/s00244-003-2119-5

    Article  CAS  Google Scholar 

  • Wakeham SG (1996) Aliphatic and polycyclic hydrocarbons in Black Sea sediments. Mar Chem 53:187–205. doi:10.1016/0304-4203(96)00003-5

    Article  CAS  Google Scholar 

  • Weinstein JE, Sanger DM (2003) Comparative tolerances of two estuarine annelids to fluoranthene under normoxic and moderately hypoxic conditions. Mar Environ Res 56:637–648. doi:10.1016/S0141-1136(03)00047-3

    Article  CAS  Google Scholar 

  • Wenner EL, Holland AF, Sanger DM (1998) Assessing short-term variability in dissolved oxygen and other water quality variables in shallow estuarine habitats. In: Proceedings of the 1998 ocean community conference, vol 2, pp 802–806

  • Wise SA, Hilpert LR, Rebbert RE, Sander LC, Schantz MM, Chesler SN, May WE (1988) Standard reference materials for the determination of polycyclic aromatic hydrocarbons. Frezenius Z Anal Chem 332:573–582. doi:10.1007/BF00472646

    Article  CAS  Google Scholar 

  • Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93. doi:10.1016/j.taap.2004.11.006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Kevin Crawford (University of Wisconsin-Oshkosh) for technical assistance and Danny Gustafson (The Citadel) for statistical advice. Field and logistical support was provided by the staff at the National Oceanic and Atmospheric Administration’s (NOAA) Oceans and Human Health Center of Excellence at the Hollings Marine Laboratory, particularly Guy DiDonato, Anne Blair, and Fred Holland, and the staff at the Marine Resources Research Institute (South Carolina Department of Natural Resources). This research was made possible through grant funds to D.S. from the NOAA Center for Sponsored Coastal Ocean Research/Coastal Ocean Program, through the South Carolina Sea Grant Consortium (No. NA960PO113), and to J.W. through The Citadel Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Weinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garner, T.R., Weinstein, J.E. & Sanger, D.M. Polycyclic Aromatic Hydrocarbon Contamination in South Carolina Salt Marsh-Tidal Creek Systems: Relationships Among Sediments, Biota, and Watershed Land Use. Arch Environ Contam Toxicol 57, 103–115 (2009). https://doi.org/10.1007/s00244-008-9256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9256-9

Keywords

Navigation