Skip to main content
Log in

Impact of an Insecticide on Persistence of Inherent Antipredator Morphology of a Small Cladoceran, Bosmina

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Pesticides often modify predatory interactions by enhancing (or inhibiting) the development of antipredator morphologies of freshwater cladocerans. In the present study, we assessed the impacts of an insecticide, carbaryl, on the life-history parameters of a polymorphic cladoceran, Bosmina longirostris, and on Bosmina–copepod interaction. In this Bosmina species, all juvenile individuals have the defensive morphology irrespective of presence of predators in juvenile stages, and they lose or maintain such morph compliance with the presence/absence of the predators in adult stages. In the present study, individual somatic growth and population growth rate decreased due to applied carbaryl. Moreover, the animals lost the defensive morphology when their body size was smaller than with no-carbaryl treatment even in the presence of predators, indicating that the insecticide inhibited persistence of the inherent antipredator morphology. Such a chemical disturbance will increase the predation risk to individuals and, in turn, influence the population dynamics of the bosminids through increased mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Black AR (1993) Predator-induced phenotypic plasticity in Daphnia pulex: life history and morphological responses to Notonecta and Chaoborus. Limnol Oceanogr 38:986–996

    Google Scholar 

  • Boersma M, Spaak P, De Meester L (1998) Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses. Am Nat 152:237–248. doi:10.1086/286164

    Article  CAS  Google Scholar 

  • Brown WL Jr, Eisner T, Whittaker WH (1970) Allomones and kairomones: transspecific chemical messengers. Bioscience 20:21–22. doi:10.2307/1294753

    Article  CAS  Google Scholar 

  • Case TJ (2000) An illustrated guide to theoretical ecology. Oxford University Press, New York

    Google Scholar 

  • Chang KH, Hanazato T (2003) Seasonal and reciprocal succession and cyclomorphosis of two Bosmina species (Cladocera, Crustacea) co-existing in a lake: their relationship with invertebrate predators. J Plankton Res 25:141–150. doi:10.1093/plankt/25.2.141

    Article  Google Scholar 

  • Chang KH, Hanazato T (2005) Prey handling time and ingestion probability for Mesocyclops sp. predation on small cladoceran species Bosmina longirostris, Bosminopsis deitersi, and Scapholeberis mucronata. Limnology 6:39–44. doi:10.1007/s10201-004-0139-0

    Article  Google Scholar 

  • Chang KH, Sakamoto M, Hanazato T (2005) Impact of pesticide application on zooplankton communities with different densities of invertebrate predators: an experimental analysis using small-scale mesocosms. Aquat Toxicol 72:373–382. doi:10.1016/j.aquatox.2005.02.005

    Article  CAS  Google Scholar 

  • Dodson SI, Hanazato T, Gorski P (1995) Behavioral responses of Daphnia pulex exposed to carbaryl and Chaoborus kairomone. Environ Toxicol Chem 14:43–50. doi:10.1897/1552-8618(1995)14[43:BRODPE]2.0.CO;2

    Article  CAS  Google Scholar 

  • Farr JA (1997) Impairment of antipredator behavior in Palaemonetes pugio by exposure to sublethal doses of parathion. Trans Am Fish Soc 106:287–290. doi:10.1577/1548-8659(1977)106<287:IOABIP>2.0.CO;2

    Google Scholar 

  • Hanazato T (1991a) Pesticides as chemical agents inducing helmet formation in Daphnia ambigua. Freshwater Biol 26:419–424. doi:10.1111/j.1365-2427.1991.tb01408.x

    Article  CAS  Google Scholar 

  • Hanazato T (1991b) Effects of repeated application of carbaryl on zooplankton communities in experimental ponds with or without the predator Chaoborus. Environ Pollut 74:309–324. doi:10.1016/0269-7491(91)90078-B

    Article  CAS  Google Scholar 

  • Hanazato T (1995) Combined effect of the insecticide carbaryl and the Chaoborus kairomone on helmet development in Daphnia ambigua. Hydrobiology 310:95–100. doi:10.1007/BF00015527

    Article  CAS  Google Scholar 

  • Hanazato T (2001) Pesticide effects on freshwater zooplankton: an ecological perspective. Environ Pollut 112:1–10. doi:10.1016/S0269-7491(00)00110-X

    Article  CAS  Google Scholar 

  • Hanazato T, Dodson SI (1992) Complex effects of a kairomone of Chaoborus and an insecticide on Daphnia pulex. J Plankton Res 14:1743–1755. doi:10.1093/plankt/14.12.1743

    Article  CAS  Google Scholar 

  • Hanazato T, Dodson SI (1993) Morphological responses of four species of cyclomorphic Daphnia to a short-term exposure to the insecticide carbaryl. J Plankton Res 15:1087–1095. doi:10.1093/plankt/15.9.1087

    Article  CAS  Google Scholar 

  • Hanazato T, Dodson SI (1995) Synergistic effects of low oxygen concentration, predator kairomone, and a pesticide on the cladoceran Daphnia pulex. Limnol Oceanogr 40:700–709

    CAS  Google Scholar 

  • Haney JF, Hall DJ (1973) Sugar coated Daphnia: a preservasion technique for Cladocera. Limnol Oceanogr 18:331–333

    Article  Google Scholar 

  • Havens KE (1994) An experimental comparison of the effects of two chemical stressors on a freshwater zooplankton assemblage. Environ Pollut 84:245–251. doi:10.1016/0269-7491(94)90135-X

    Article  CAS  Google Scholar 

  • Kappes H, Sinsch U (2002a) Temperature- and predator-induced phenotypic plasticity in Bosmina cornuta and B. pellucida (Crustacea: Cladocera). Freshwater Biol 47:1944–1955. doi:10.1046/j.1365-2427.2002.00943.x

    Article  Google Scholar 

  • Kappes H, Sinsch U (2002b) Morphological variation in Bosmina longirostris (O.F. Muller, 1785) (Crustacea: Cladocera): consequence of cyclomorphosis or indication of cryptic species? J Zool Syst Evol Res 40:113–122. doi:10.1046/j.1439-0469.2002.00184.x

    Article  Google Scholar 

  • Kerfoot WC (1977a) Competition in cladoceran communities: the cost of evolving defenses against copepod predation. Ecology 58:303–313. doi:10.2307/1935605

    Article  Google Scholar 

  • Kerfoot WC (1977b) Implications of copepod predation. Limnol Oceanogr 22:316–325

    Google Scholar 

  • Kerfoot WC (1987) Translocation experiment: Bosmina responses to copepod predation. Ecology 68:596–610. doi:10.2307/1938465

    Article  Google Scholar 

  • Lüning J (1994) Anti-predator defenses in Daphnia: are life-history changes always linked to induced neck spines? Oikos 69:427–436. doi:10.2307/3545855

    Article  Google Scholar 

  • Lüning J (1995) Life-history responses to Chaoborus of spined and unspined Daphnia pulex. J Plankton Res 17:71–84. doi:10.1093/plankt/17.1.71

    Article  Google Scholar 

  • Lürling M, Scheffer M (2007) Info-disruption: pollution and the transfer of chemical information between organisms. Trends Ecol Evol 22:374–379. doi:10.1016/j.tree.2007.04.002

    Article  Google Scholar 

  • Mehner T, Thiel R (1999) A review of predation impact by 0 + fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environ Biol Fishes 56:169–181. doi:10.1023/A:1007532720226

    Article  Google Scholar 

  • OECD (2004) Daphnia sp., acute immobilization test (No.202). Organisation for Economic Co-operation and Development, Paris

  • Passino DRM, Novak AJ (1984) Toxicity of arsenate and DDT to the cladoceran Bosmina longirostris. Bull Environ Contam Toxicol 33:325–329. doi:10.1007/BF01625551

    Article  CAS  Google Scholar 

  • Preston BL, Cecchine G, Snell TW (1999) Effects of pentachlorophenol on predator avoidance behavior of the rotifer Brachionus calyciflorus. Aquat Toxicol 44:201–212. doi:10.1016/S0166-445X(98)00074-5

    Article  CAS  Google Scholar 

  • Saglio P, Trijasse S (1998) Behavioral responses to atrazine and diuron in goldfish. Arch Environ Contam Toxicol 35:484–491. doi:10.1007/s002449900406

    Article  CAS  Google Scholar 

  • Sakamoto M (2008) Role of prey–predator interactions in structuring zooplankton community and disturbance by insecticide on them. PhD thesis, Shinshu University

    Google Scholar 

  • Sakamoto M, Chang KH, Hanazato T (2005) Differential sensitivity of a predacious cladoceran (Leptodora) and its prey (the cladoceran Bosmina) to the insecticide carbaryl: results of acute toxicity tests. Bull Environ Contam Toxicol 75:28–33. doi:10.1007/s00128-005-0714-z

    Article  CAS  Google Scholar 

  • Sakamoto M, Chang KH, Hanazato T (2006) Inhibition of development of anti-predator morphology in the small cladoceran Bosmina by an insecticide: impact of an anthropogenic chemical on prey-predator interactions. Freshwater Biol 51:1974–1983. doi:10.1111/j.1365-2427.2006.01628.x

    Article  CAS  Google Scholar 

  • Sakamoto M, Chang KH, Hanazato T (2007) Plastic phenotypes of antennule shape in Bosmina longirostris controlled by the physical stimuli from predators. Limnol Oceanogr 52:2072–2078

    Google Scholar 

  • Sakamoto M, Hanazato T (2008) Antennule shape and body size of Bosmina: key factors determining its vulnerability to predacious Copepoda. Limnology 9:27–34. doi:10.1007/s10201-007-0231-3

    Article  Google Scholar 

  • Sakamoto M, Hanazato T (in press) Proximate factors controlling the morphologic plasticity of Bosmina: linking artificial laboratory treatments and natural conditions. Hydrobiologia

  • Scholz NL, Truelove NK, French BL et al (2000) Diazinon disrupts antipredator and homing behaviors in chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 57:1911–1918. doi:10.1139/cjfas-57-9-1911

    Article  CAS  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  • Stibor H, Lüning J (1994) Predator induced phenotypic variability in the pattern of growth and reproduction in Daphnia hyaline (Crustacea: Cladocera). Funct Ecol 8:97–101

    Google Scholar 

  • Tollrian R, Dodson SI (1999) Inducible defenses in Cladocera: constrains, costs, and multipredator environments. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ, pp 177–202

    Google Scholar 

  • Tollrian R, Laforsch C (2006) Linking predator kairomones and turbulence: synergistic effects and ultimate reasons for phenotypic plasticity in Daphnia cucullata. Arch Hydrobiol 167:135–146. doi:10.1127/0003-9136/2006/0167-0135

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Grants-in-Aid to M. Sakamoto (F1910361) from JSPS Research Fellowship for Young Scientist, Grants-in-Aid to T. Hanazato (No. 17201012) from the Japan Society for the promotion of Science, and a research fund to T. Hanazato from the ExTEND2005 project of the Ministry of Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Sakamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, M., Hanazato, T. & Tanaka, Y. Impact of an Insecticide on Persistence of Inherent Antipredator Morphology of a Small Cladoceran, Bosmina . Arch Environ Contam Toxicol 57, 68–76 (2009). https://doi.org/10.1007/s00244-008-9247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9247-x

Keywords