Skip to main content

Advertisement

Log in

The Effects of Heavy Metal Mine Drainage on Population Size Structure, Reproduction, and Condition of Western Mosquitofish, Gambusia affinis

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Anthropogenic degradation of aquatic environments worldwide results in disturbed habitats, altered communities, and stressed populations. Surface waters located in an abandoned lead-zinc mining district in northeastern Oklahoma are no exception. This study examines the reproductive and somatic responses of a pollution-tolerant fish, the western mosquitofish, Gambusia affinis (Teleostei: Poeciliidae), living in mine outflow waters contaminated by heavy metals. Populations were sampled from four streams, which were classified into three habitat types. Populations from Tar Creek and an Unnamed Tributary of Tar Creek receive direct input of mine drainage, while populations living in reference creeks are not known to have mining influence. The influence of mine drainage directly or indirectly (via altered competitor and predator regimes or changes in food availability) affects G. affinis at both the population and the individual level. Metal-contaminated sites had reduced proportions of males and reproductively active females and altered male population size structures. Individual-level effects were apparent, as all G. affinis from Tar Creek invested less in liver weights, and mature males and reproductively active females from Tar Creek invested less in gonad weights. Furthermore, males from impacted sites were significantly lighter than those from reference creeks. Gravid females from Tar Creek had smaller clutch sizes, but average embryo weight did not differ among streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alquezar R, Markich SJ, Booth DJ (2006) Effects of metals on condition and reproductive output of the smooth toadfish in Sydney estuaries, south-eastern Australia. Environ Pollut 142:116–122. doi:10.1016/j.envpol.2005.09.009

    Article  CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85. doi:10.1016/S0065-2504(08)60202-0

    Article  Google Scholar 

  • Batty J, Lim R (1999) Morphological and reproductive characteristics of male mosquitofish (Gambusia affinis holbrooki) inhabiting sewage-contaminated waters in New South Wales, Australia. Arch Environ Contam Toxicol 36:301–307. doi:10.1007/s002449900475

    Article  CAS  Google Scholar 

  • Bell G, Koufopanou V (1986) The cost of reproduction. In: Dawkins R, Ridley M (eds) Oxford surveys in evolutionary biology, vol 3. Oxford University Press, Oxford, pp 83–131

    Google Scholar 

  • Berkman HE, Rabeni CF (1987) Effect of siltation on stream fish communities. Environ Biol Fish 18:285–294. doi:10.1007/BF00004881

    Article  Google Scholar 

  • Bortone SA, Davis WP (1994) Fish intersexuality as indicator of environmental stress. BioScience 44:165–172. doi:10.2307/1312253

    Article  Google Scholar 

  • Brooks M (2005) Interacting effects of resource level and parasite infection on host reproduction. MS thesis, University of Oklahoma

  • Busacker GP, Adelman IR, Goolish EM (1990) Growth. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, MD, pp 363–387

    Google Scholar 

  • Cech JJ Jr, Massingill MJ, Vondracek B, Linden AL (1985) Respiratory metabolism of mosquitofish, Gambusia affinis: effects of temperature, dissolved oxygen, and sex difference. Environ Biol Fish 13:297–307. doi:10.1007/BF00002914

    Article  Google Scholar 

  • Celentano E, Defeo O (2006) Habitat harshness and morphodynamics: life history traits of the mole crab Emerita brasiliensis in Uruguayan sandy beaches. Mar Biol 149:1453–146. doi:10.1007/s00227-006-0309-1

    Article  Google Scholar 

  • Cody ML (1966) A general theory of clutch size. Evolution 20:174–184. doi:10.2307/2406571

    Article  Google Scholar 

  • Cody RP, Bortone SA (1997) Masculinization of mosquitofish as an indicator of exposure to kraft mill effluent. Bull Environ Contam Toxicol 58:429–436. doi:10.1007/s001289900352

    Article  CAS  Google Scholar 

  • Constantz GD (1989) Reproductive Biology of Poeciliid Fishes. In: Meffe GK, Snelson FF (eds) Ecology and evolution of livebearing fishes. Prentice Hall, Englewoood Cliffs, NJ, pp 33–50

    Google Scholar 

  • Donker MH, Bogart CG (1991) Adaptation to cadmium in three populations of the isopod Porcellio scaber. Comp Biochem Physiol 100C:143–146

    CAS  Google Scholar 

  • Donker MH, Zonneveld C, van Straalen NM (1993) Early reproduction and increased reproductive allocation in metal-adapted populations of terrestrial isopod Porcellio scaber. Oecologia 96:316–323. doi:10.1007/BF00317500

    Article  Google Scholar 

  • Edwards TM, Miller HD, Guillette LJ Jr (2006) Water quality influences reproduction in female mosquitofish (Gambusia holbrooki) from eight Florida springs. Environ Health Perspect 114:69–75

    Article  Google Scholar 

  • Eeva T, Hakkarainen H, Laaksonen T, Lehikoinen E (2006) Environmental pollution has sex-dependent effects on local survival. Biol Lett 2:298–300. doi:10.1098/rsbl.2006.0443

    Article  Google Scholar 

  • Environmental Protection Agency (2004) EPA national priorities list narrative: Tar Creek (Ottawa County), OK. Office of Superfund Remediation and Technology Innovation. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Environmental Protection Agency (2005) Five year review, Tar Creek superfund site, Ottawa County, Oklahoma. US Environmental Protection Agency, Superfund-Region 6: South Central, Dallas, TX

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  CAS  Google Scholar 

  • Franssen CM, Brooks MA, Parham RW, Sutherland KG, Matthews WJ (2006) Small-bodied fishes of Tar Creek and other small streams in Ottawa County, Oklahoma. Proc Okla Acad Sci 86:9–16

    Google Scholar 

  • Franssen CM, Riesch R, Tobler M, Garcia de Leon FJ, Tiedemann R, Schlupp I, Plath M (2008) Reduced sperm production in an extremophile fish, the cave molly (Poecilia mexicana, Poeciliidae, Teleostei). Aquat Ecol (Online First)

  • Governor Frank Keating’s Tar Creek Superfund Task Force (2000) Governor Frank Keating’s Tar Creek Task Force Final Report. Oklahoma Department of Environmental Quality, Office of the Secretary of Environment, Oklahoma City

  • Gray JS (1979) Pollution-induced changes in populations. Phil Trans R Soc B 286:545–561. doi:10.1098/rstb.1979.0045

    Article  CAS  Google Scholar 

  • Gray JS (1989) Effects of environmental stress on species rich assemblages. Biol J Linn Soc 37:19–32

    Article  Google Scholar 

  • Hoque MT, Yusoff FM, Law AT, Syed MA (1998) Effect of hydrogen sulphide on liver somatic index and Fulton’s condition factor in Mystus nemurus. J Fish Biol 52:23–30

    CAS  Google Scholar 

  • Howell WM, Black DA, Bortone SA (1980) Abnormal expression of secondary sex characters in a population of mosquitofish, Gambusia affinis holbrooki: evidence for environmentally-induced masculinization. Copeia 4:676–681. doi:10.2307/1444443

    Article  Google Scholar 

  • Howell WM, Denton TE (1989) Gonopodial morphogenesis in female mosquitofish, Gambusia affinis affinis, masculinized by exposure to degradation products from plant sterols. Environ Biol Fish 24:43–51. doi:10.1007/BF00001609

    Article  Google Scholar 

  • Hughes AL (1985) Male size, mating success, and mating strategy in the mosquitofish Gambusia affinis (Poeciliidae). Behav Ecol Sociobiol 17:271–278. doi:10.1007/BF00300146

    Article  Google Scholar 

  • Hughes AL (1986) Growth of adult mosquitofish Gambusia affinis in the laboratory. Copeia 1986:534–536. doi:10.2307/1445016

    Article  Google Scholar 

  • Hylland K, Feist S, Thain J, Förlin L (2003) Molecular/cellular processes and the health of the individual. In: Lawrence AJ, Hemingway KL (eds) Effects of pollution on fish. Blackwell Science, Oxford, pp 134–178

    Chapter  Google Scholar 

  • Jester DB, Echelle AA, Matthews WJ, Pigg J, Scott CM, Collins KD (1992) The fishes of Oklahoma, their gross habitats, and their tolerance of degradation in water quality and habitat. Proc Okla Acad Sci 72:7–19

    Google Scholar 

  • Johnson CR (1976) Diel variation in the thermal tolerance of Gambusia affinis affinis (Pisces: Poeciliidae). Comp Biochem Physiol 55A:337–340. doi:10.1016/0300-9629(76)90056-6

    Article  Google Scholar 

  • Karr JR, Toth LA, Dudley DR (1985) Fish communities of Midwestern rivers: a history of degradation. BioScience 35:90–95. doi:10.2307/1309845

    Article  Google Scholar 

  • Keklak MM, Newman MC, Mulvey M (1994) Enhanced uranium tolerance of an exposed population of the eastern mosquitofish (Gambusia holbrooki girard 1859). Arch Environ Contam Toxicol 27:20–24. doi:10.1007/BF00203882

    Article  CAS  Google Scholar 

  • Khan RA (2005) Assessment of stress-related bioindicators in winter flounder (Pleuronectes americanus) exposed to discharges from a pulp and paper mill in Newfoundland: a 5-year field study. Arch Environ Contam Toxicol 51:103–110. doi:10.1007/s00244-005-0166-9

    Article  CAS  Google Scholar 

  • Kime DE (1995) The effects of pollution on reproduction in fish. Rev Fish Biol Fish 5:52–96. doi:10.1007/BF01103366

    Article  Google Scholar 

  • Klerks PL, Lentz SA (1998) Resistance to lead and zinc in the western mosquitofish Gambusia affinis inhabiting contaminated Bayou Trepagnier. Ecotoxicol 7:11–17. doi:10.1023/A:1008851516544

    Article  CAS  Google Scholar 

  • Klerks PL, Levington JS (1989) Rapid evolution of resistance to extreme metal pollution in a benthic oligochaete. Biol Bull 176:135–141. doi:10.2307/1541580

    Article  CAS  Google Scholar 

  • Koya Y, Kamiya E (2000) Environmental regulation of annual reproductive cycle in the mosquitofish, Gambusia affinis. J Exp Zool 286:204–211. doi:10.1002/(SICI)1097-010X(20000201)286:2<204::AID-JEZ12>3.0.CO;2-G

    Article  CAS  Google Scholar 

  • Krumholz LA (1948) Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird & Girard), and its use in mosquito control. Ecol Monogr 18:1–43. doi:10.2307/1948627

    Article  Google Scholar 

  • Larsson DGJ, Förlin L (2002) Male-biased sex ratios of fish embryos near a pulp mill: temporary recovery after a short-term shutdown. Environ Health Perspect 110:739–742

    Google Scholar 

  • Larsson DGJ, Hällman H, Förlin L (2000) More male fish embryos near a pulp mill. Environ Toxicol Chem 19:2911–2917. doi:10.1897/1551-5028(2000)019<2911:MMFENA>2.0.CO;2

    Article  CAS  Google Scholar 

  • Lawrence AJ, Elliott M (2003) Introduction and conceptual model. In: Lawrence AJ, Hemingway KL (eds) Effects of pollution on fish. Blackwell Science, Oxford, pp 1–13

    Chapter  Google Scholar 

  • Lee RM, Gerking SD (1980) Survival and reproductive performance of the desert pupfish Cyprinodon n nevadensis (Eigenmann and Eigenmann) in acid waters. J Fish Biol 17:507–515. doi:10.1111/j.1095-8649.1980.tb02782.x

    Article  Google Scholar 

  • Little EE, Flerov BA, Ruzhunskaya NN (1985) Behavioral approaches in aquatic toxicity: a review. In: Mehrle PM, Gray RH, Kendall RL (eds) Toxic substances in the aquatic environment: an international perspective. American Fisheries Society, Bethesda, MD, pp 72–98

    Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273. doi:10.1038/sj.hdy.6800725

    Article  CAS  Google Scholar 

  • Luoma SN (1999) Emerging contaminant issues from an ecological perspective. In: Morganwalp DW, Buxton HT (eds) US Geological Survey Toxic Substances Hydrology Program—Proceedings of the Technical Meeting, Charleston, SC, March 8–12, 1999. Vol 2. Contamination of hydrologic systems and related ecosystems. US Geological Survey Water-Resources Investigations Report 99-4018B

  • Lydeard C, Wooten MC, Meyer A (1995) Molecules, morphology, and area cladograms: a cladistic and biogeographicanalysis of Gambusia (Teleostei: Poeciliidae). Syst Biol 44:221–236. doi:10.2307/2413708

    Google Scholar 

  • Maltby L (1991) Pollution as a probe of life-history adaptations in Asellus aquaticus (Isopoda). Oikos 61:11–18. doi:10.2307/3545402

    Article  Google Scholar 

  • McIntyre PB, Michel E, France K, Rivers A, Hakizimana P, Cohen AS (2005) Individual- and assemblage-level effects of anthropogenic sedimentation on snails in Lake Tanganyika. Conserv Biol 19:171–181. doi:10.1111/j.1523-1739.2005.00456.x

    Article  Google Scholar 

  • Meffe GK (1985) Life history patterns of Gambusia marshi (Poeciliidae) from Cuatro Ciénegas, Mexico. Copeia 1985:898–905

    Article  Google Scholar 

  • Meffe GK (1987) Embryo size variation in mosquitofish: optimality vs plasticity in propagule size. Copeia 1987:762–768. doi:10.2307/1445671

    Article  Google Scholar 

  • Meffe GK, Snelson FF Jr (1989) An ecological overview of poeciliid fishes. In: Meffe GK, Snelson FF Jr (eds) Ecology and evolution of livebearing fishes. Prentice Hall, Englewoood Cliffs, NJ, pp 13–31

    Google Scholar 

  • Meffe GK, Snelson FF Jr (1993a) Lipid dynamics during reproduction in two livebearing fishes, Gambusia holbrooki and Poecilia latipinna. Can J Fish Aquat Sci 50:2185–2191

    Article  CAS  Google Scholar 

  • Meffe GK, Snelson FF Jr (1993b) Annual lipid cycle in eastern mosquitofish (Gambusia holbrooki: Poeciliidae) from South Carolina. Copeia 1993:596–604. doi:10.2307/1447220

    Article  Google Scholar 

  • Meyer JN, Di Giulio RT (2003) Heritable adaptation and fitness costs in killifish (Funduus heteroclitus) inhabiting a polluted estuary. Ecol Appl 13:490–503. doi:10.1890/1051-0761(2003)013[0490:HAAFCI]2.0.CO;2

    Article  Google Scholar 

  • Oklahoma Water Resources Board (1983) Tar Creek Field Investigation, Task 1.2. Water quality characteristics of seepage and runoff at two tailings piles in the Picher Field, Ottawa County, Oklahoma. OWRB, Water Quality Division, Oklahoma City

    Google Scholar 

  • Parker GA (1992) The evolution of sexual size dimorphism in fish. J Fish Biol 41:1–20. doi:10.1111/j.1095-8649.1992.tb03864.x

    Article  Google Scholar 

  • Plath M, Tobler M, Riesch R, Garcia de Leon FJ, Giere O, Schlupp I (2007) Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94:991–996

    Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845. doi:10.1038/35002708

    Article  CAS  Google Scholar 

  • Pyke GH (2005) A review of the biology of Gambusia affinis and G. holbrooki. Rev Fish Biol Fish 15:339–365. doi:10.1007/s11160-006-6394-x

    Article  Google Scholar 

  • Reed TB, Czarnecki JB (2006) Ground-water flow model of the Boone formation at the Tar Creek Superfund Site, Oklahoma and Kansas. US Geological Survey, Reston, VA

    Google Scholar 

  • Reznick DN, Braun B (1987) Fat cycling in the mosquitofish (Gambusia affinis): fat storge as a reproductive adaptation. Oecologia 73:401–413. doi:10.1007/BF00385257

    Article  Google Scholar 

  • Seehausen O, van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811. doi:10.1126/science.277.5333.1808

    Article  CAS  Google Scholar 

  • Sibly RM, Calow P (1989) A life-cycle theory of responses to stress. Biol J Linn Soc 37:101–116. doi:10.1111/j.1095-8312.1989.tb01908.x

    Article  Google Scholar 

  • Snelson FF Jr (1989) Social and environmental control of life history traits in poeciliid fishes. In: Meffe GK, Snelson FF Jr (eds) Ecology and evolution of livebearing fishes. Prentice Hall, Englewoood Cliffs, NJ, pp 149–161

    Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47. doi:10.1086/409052

    Article  CAS  Google Scholar 

  • Stearns SC (1983) The genetic basis of differences in life-history traits among six populations of mosquitofish (Gambusia affinis) that shared ancestors in 1905. Evolution 37:618–627. doi:10.2307/2408274

    Article  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268. doi:10.2307/2389364

    Article  Google Scholar 

  • Stibor H (1992) Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92:162–165. doi:10.1007/BF00317358

    Article  Google Scholar 

  • Stockwell CA, Vinyard GL (2000) Life history variation in recently established populations of western mosquitofish (Gambusia affinis). W N Am Nat 60:273–280

    Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000. doi:10.1073/pnas.96.11.5995

    Article  CAS  Google Scholar 

  • Tobler M, Schlupp I, Heubel KU, Riesch R, García de León FJ, Giere O, Plath M (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585. doi:10.1007/s00792-006-0531-2

    Article  CAS  Google Scholar 

  • Townsend CR, Begon ME, Harper JL (2003) Essentials of ecology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Trendall JT (1983) Life history variation among experimental populations of the mosquitofish, Gambusia affinis. Copeia 1983:953–963. doi:10.2307/1445096

    Article  Google Scholar 

  • Trexler JC (1985) Variation in the degree of viviparity in the sailfin molly, Poecilia latipinna. Copeia 1984:999–1004. doi:10.2307/1445254

    Article  Google Scholar 

  • van Dyk JC, Pieterse GM, van Vuren JHJ (2005) Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicol Environ Saf 66:432–440. doi:10.1016/j.ecoenv.2005.10.012

    Google Scholar 

  • Vinson SB, Boyd CE, Ferguson DE (1963) Resistance to DDT in the mosquito fish, Gambusia affinis. Science 139:217–218. doi:10.1126/science.139.3551.217

    Article  CAS  Google Scholar 

  • Weaver LA, Garman GC (1994) Urbanization of a watershed and historical changes in a stream fish assemblage. Trans Am Fish Soc 123:162–172. doi:10.1577/1548-8659(1994)123<0162:UOAWAH>2.3.CO;2

    Article  Google Scholar 

  • Weis JS, Weis P (1989) Tolerance and stress in a polluted environment: the case of the mummichog. BioScience 39:89–95. doi:10.2307/1310907

    Article  Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    CAS  Google Scholar 

  • Whitfield AK, Elliott M (2002) Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. J Fish Biol 61(Suppl A):229–250

    Article  Google Scholar 

  • Wildhaber ML, Allert AL, Schmitt CJ, Tabor VM, Mulhern D, Powell KL, Sowa SP (2000) Natural and anthropogenic influences on the distribution of the threatened Neosho madtom in a Midwestern warmwater stream. Trans Am Fish Soc 129:243. doi:10.1577/1548-8659(2000)129<0243:NAAIOT>2.0.CO;2

    Article  Google Scholar 

  • Williams GC (1966) Natural selection, the costs of reproduction, and a refinement of Lack’s Principle. Am Nat 100:687–690. doi:10.1086/282461

    Article  Google Scholar 

  • Winemiller KO (1993) Seasonality of reproduction by livebearing fishes in tropical rainforest streams. Oecologia 95:266–276. doi:10.1007/BF00323499

    Article  Google Scholar 

  • Wirgin I, Waldman JR (2004) Resistance to contaminants in North American fish populations. Mutat Res 552:73–100. doi:10.1016/j.mrfmmm.2004.06.005

    CAS  Google Scholar 

  • Xie L, Klerks PL (2003) Responses to selection for cadmium resistance in the least killifish, Heterandria formosa. Environ Toxicol Chem 22:313–320. doi:10.1897/1551-5028(2003)022<0313:RTSFCR>2.0.CO;2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N. R. Franssen, W. J. Matthews, E. Marsh-Matthews, I. Schlupp, and M. Tobler provided comments, technical, and statistical support. Additional field help came from M. Brooks, R. Daily, K. Sutherland, E. Thaden, and J. Wesner. R. W. Nairn and J. A. LaBar provided water quality data. Two anonymous reviewers provided useful insights. Funding was provided by EPA Project X7-97682001-0, USGS Project CA-04HQAG0131, and the University of Oklahoma GSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courtney M. Franssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franssen, C.M. The Effects of Heavy Metal Mine Drainage on Population Size Structure, Reproduction, and Condition of Western Mosquitofish, Gambusia affinis . Arch Environ Contam Toxicol 57, 145–156 (2009). https://doi.org/10.1007/s00244-008-9244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9244-0

Keywords

Navigation