Toxicological Responses of Red-Backed Salamanders (Plethodon cinereus) to Soil Exposures of Copper

  • Matthew A. Bazar
  • Michael J. QuinnJr.
  • Kristie Mozzachio
  • John A. Bleiler
  • Christine R. Archer
  • Carlton T. Phillips
  • Mark S. Johnson
Article

Abstract

Copper (Cu) has widespread military use in munitions and small arms, particularly as a protective jacket for lead projectiles. The distribution of Cu at many US military sites is substantial and sites of contamination include habitats in and around military storage facilities, manufacturing, load and packing plants, open burning/open detonation areas, and firing ranges. Some of these areas include habitat for amphibian species, which generally lack toxicity data for risk assessment purposes. In an effort to ascertain Cu concentrations in soil that are toxic to terrestrial amphibians, 100 red-backed salamanders (Plethodon cinereus) were randomly sorted by weight, assigned to either a control soil or one of four treatments amended with copper acetate in soil, and exposed for 28 days. Analytical mean soil concentrations were 18, 283, 803, 1333, and 2700 mg Cu/kg soil dry weight. Food consisted of uncontaminated flightless Drosophila melanogaster. Survival was reduced in salamanders exposed to 1333 and 2700 mg/kg by 55% and 100%, respectively. Mortality/morbidity occurred within the first 4 days of exposure. These data suggest that a Cu soil concentration of and exceeding 1333.3 ± 120.2 mg/kg results in reduced survival, whereas hematology analyses suggest that a concentration of and exceeding 803.3 ± 98.4 mg/kg might result in reduced total white blood cell count. No effects were observed at 283.3 ± 36.7 mg/kg.

References

  1. ATSDR (Agency for Toxic Substances and Disease Registry) (1990) Toxicological profile for copper. US Public Health Service, US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  2. Bishop SC (1943) Handbook of salamanders. Cornell University Press, Ithaca, NYGoogle Scholar
  3. Bodek I et al (eds) (1988) Environmental inorganic chemistry. Pergamon Press, New York, NYGoogle Scholar
  4. Burton TM, Likens GE (1975) Energy flow and nutrient cycling in salamander populations in the Hubbard Brook experimental forest, New Hampshire. Ecology 56:1068–1080. doi:10.2307/1936147 CrossRefGoogle Scholar
  5. Davic RD, Welsh HH Jr (2004) On the ecological roles of salamanders. Annu Rev Ecol Evol Syst 35:405–435. doi:10.1146/annurev.ecolsys.35.112202.130116 CrossRefGoogle Scholar
  6. Eisler R (1997) Copper hazards to fish, wildlife, and invertebrates: a synoptic review. US Geological Survey, Biological Resources Division, Biological Science Report USGS/BRD/BSR–1998-0002, p 98Google Scholar
  7. Feng N, Dagan R, Bitton G (2007) Toxicological approach for assessing the heavy metal binding capacity of soils. Soil Sediment Contam 16:451–458. doi:10.1080/15320380701490226 CrossRefGoogle Scholar
  8. Ginocchio R, Sanchez P, de la Fuenta LM et al (2006) Agricultural soil spiked with copper mine wastes and copper concentrate: implications for copper bioavailability and bioaccumulation. Environ Toxicol Chem 25:712–718. doi:10.1897/05-105R.1 CrossRefGoogle Scholar
  9. Huggett RJ, Kimerle RA, Mehrle PM Jr, Bergman HL (1992) Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. Lewis Publishers, Chelsea, MIGoogle Scholar
  10. Huynh HV, Hiskey MA, Meyer TJ, Wetzler M (2006) Green primaries: environmentally friendly energetic complexes. Proc Natl Acad Sci USA 103:5409–5412. doi:10.1073/pnas.0600827103 CrossRefGoogle Scholar
  11. Irwin RJ, VanMouwerik M, Stevens L, Seese MD, Basham W (1997) Environmental contaminants encyclopedia. National Park Service. Water Resources Division, Fort Collins, COGoogle Scholar
  12. Jaeger RG (1992) Housing, handling, and nutrition of salamanders. In: Shaeffer DO, Kleinow KM, Krulisch L (eds) The care and use of amphibians, reptiles and fish in research. Scientist Center for Animal Welfare, Bethesda, MD, pp 25–29Google Scholar
  13. Johnson MS, Franke LS, Lee RB, Holladay SD (1999) Bioaccumulation of 2,4,6-trinitrotoluene and polychlorinated biphenyls through two routes of exposure in a terrestrial amphibian: is the dermal route significant? Environ Toxicol Chem 18:873–878. doi:10.1897/1551-5028(1999)018<0873:BOTAPB>2.3.CO;2CrossRefGoogle Scholar
  14. Johnson MS, Holladay SD, Lippenholz KS, Jenkins JL, McCain WC (2000) Effects of 2,4,6-trinitrotoluene in a holistic environmental exposure regime on a terrestrial salamander, Ambystoma tigrinum. Toxicol Pathol 28:334–341. doi:10.1177/019262330002800214 CrossRefGoogle Scholar
  15. Johnson MS, Paulus HI, Salice CJ, Checkai RT, Simini M (2004) Toxicologic and histopathologic response of the terrestrial salamander Plethodon cinereus to soil exposures of 1,3,5-trinitrohexahydro-1,3,5-triazine. Arch Environ Contam Toxicol 47:496–501. doi:10.1007/s00244-004-3242-7 CrossRefGoogle Scholar
  16. Johnson MS, Suski J, Bazar MA (2007) Toxicological responses of red-backed salamanders (Plethodon cinereus) to subchronic exposures of 2,4-dinitrotoluene. Environ Pollut 14:604–608. doi:10.1016/j.envpol.2006.10.007 CrossRefGoogle Scholar
  17. Klaassen CD (2001) Cassaret and Doull’s toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New YorkGoogle Scholar
  18. Kungolos A, Samaras P, Tsiridas V, Petala M, Sakellaropoulos G (2006) Bioavailability and toxicity of heavy metals in the presence of natural organic matter. J Environ Sci Health A 41:1509–1517Google Scholar
  19. Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington DCGoogle Scholar
  20. Sparling DW, Bishop CA, Linder G (2000) The current status of amphibian and reptile ecotoxicological research. In: Sparling DW, Linder G, Bishop CA (eds) Ecotoxicology of amphibians and reptiles. SETAC, Pensacola, FL, pp 1–13Google Scholar
  21. Stebbins RC, Cohen N (1995) A natural history of amphibians. Princeton University Press, Princeton, NJGoogle Scholar
  22. Thomas VG, Santore RC, McGill I (2007) Release of copper from sintered-tungsten-bronze shot under different pH conditions and its potential toxicity to aquatic organisms. Sci Total Environ 374:71–79. doi:10.1016/j.scitotenv.2006.10.004 CrossRefGoogle Scholar
  23. US EPA (United States Environmental Protection Agency) (1985) Ambient water quality criteria for copper—1984. Office of Water Report EPA 440/5-84-031Google Scholar
  24. US EPA (United States Environmental Protection Agency) (2007) Ecological soil screening levels for copper. Interim final–February 2007. OSWER Directive 9285.7-68. Available from http://www.epa.gov/ecotox/ecossl/pdf/eco-ssl_copper.pdf
  25. Vijver MG, Koster M, Peijnenburg WJGM (2007) Impact of pH on Cu accumulation kinetics in earthworm cytosol. Environ Sci Technol 41:2255–2260. doi:10.1021/es061212k CrossRefGoogle Scholar
  26. Welsh HH Jr, Droege S (2001) A case for using plethodontid salamanders for monitoring biodiversity and ecoystem integrity of North American forests. Conserv Biol 15:558–569. doi:10.1046/j.1523-1739.2001.015003558.x CrossRefGoogle Scholar
  27. Wyman RL, Hawksley-Lescault DS (1987) Soil acidity affects distribution, behavior, and physiology of the salamander Plethodon cinereus. Ecology 68:1819–1827. doi:10.2307/1939873 CrossRefGoogle Scholar

Copyright information

© US Government  2008

Authors and Affiliations

  • Matthew A. Bazar
    • 1
  • Michael J. QuinnJr.
    • 1
  • Kristie Mozzachio
    • 2
  • John A. Bleiler
    • 3
  • Christine R. Archer
    • 3
  • Carlton T. Phillips
    • 4
  • Mark S. Johnson
    • 1
  1. 1.US Army Center for Health Promotion and Preventive MedicineDirectorate of ToxicologyAberdeen Proving GroundUSA
  2. 2.Biotechnics Inc.HillsboroughUSA
  3. 3.ENSR Corp.WestfordUSA
  4. 4.Edgewood Chemical Biological CenterAberdeen Proving GroundUSA

Personalised recommendations