Skip to main content

Advertisement

Log in

Interactions Between Concentrations of Chemical Elements in Human Femoral Heads

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Environmental and occupational exposure to various metals has been a major public health concern and the subject of many studies. With the development of industry and transportation, environmental pollution has markedly worsened. As a result, metals are now ubiquitous and are absorbed into the body with food, drinking water, and polluted air. Exposure to these elements leads to numerous health problems, affecting almost every system of the human body, including the skeletal system. Bone is a specific research material that is difficult to obtain, therefore chemical analyses of metal concentrations in this tissue are rarely found in the literature. Nevertheless, bone, due to its long regeneration period, can serve as a biomarker of a long-term metal accumulation resulting from environmental or occupational exposure. Our study was conducted on bone samples harvested from inhabitants of the Upper Silesia region during hip replacement surgery. Femoral heads removed during surgery were sectioned into slices and further subdivided into samples comprising articular cartilage, cortical bone, and trabecular bone. Concentrations of 12 trace elements were measured with an atomic absorption spectrophotometry method. We found significant correlation between concentrations of these metal elements in the samples of cortical bone. This is determined not only by the physiological functions of these metals in hydroxyapatite, but also by the specific mineral structure of the bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfen T, Elinder CG, Carlsson MD, Grubb A, Hellström L, Persson B, Spång G, Schütz A, Järup L (2000) Low-level cadmium exposure and osteoporosis. J Bone Miner Res 15:1579–1586. doi:10.1359/jbmr.2000.15.8.1579

    Article  Google Scholar 

  • Bergdahl IA, Chettle DR, Skerfving S (1998) Lead concentrations in tibial and calcaneal bone in relation to the history of occupational lead exposure. Scand J Work Environ Health 24:38–45

    CAS  Google Scholar 

  • Berglund M, Akesson A, Bjellerup P, Vahter M (2000) Metal-bone interactions. Toxicol Lett 112–113:219–225. doi:10.1016/S0378-4274(99)00272-6

    Article  Google Scholar 

  • Bogden JD, Gertner SB, Christakos S, Kemp FW, Yang Z (1992) Dietary calcium modifies concentrations of lead and other metals and renal calbindin in rats. Can J Nutr 122:1151–1160

    Google Scholar 

  • Brito JAA, McNeill FE, Chettle DR, Webber EC, Vaillancourt C (2000) Study of the relationships between bone lead levels and its variation with time and the cumulative blood lead index, in a repeated bone lead survey. J Environ Monit 2:271–276. doi:10.1039/b002855j

    Article  CAS  Google Scholar 

  • Brito JAA, McNeill FE, Stronach I, Webber EC, Wells S, Richard N, Chettle DR (2001) Longitudinal changes in bone lead concentration: implications for modeling of human bone lead metabolism. J Environ Monit 3:343–351. doi:10.1039/b101493p

    Article  CAS  Google Scholar 

  • Brito JAA, McNeill FE, Webber EC, Wells S, Richard N, Carvalho ML, Chettle DR (2002) Evaluation of a novel structural model to describe the endogenous release of lead from bone. J Environ Monit 4:194–201. doi:10.1039/b108817c

    Article  CAS  Google Scholar 

  • Christoffersen J, Christoffersen MR, Larsen R, Rostrup E, Tingsgaard P, Andersen O, Grandjean P (1988) Interaction of cadmium ions with calcium hydroxyapatite crystals: a possible mechanism contributing to the pathogenesis of cadmium-induced bone diseases. Calcif Tissue Int 42:331–339. doi:10.1007/BF02556369

    Article  CAS  Google Scholar 

  • D’Haese PC, Couttenye MM, Lamberts LV, Elseviers MM, Goodman WG, Schrooten I, Cabrera EW, De Brone ME (1999) Aluminium, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium and calcium content in bone of end-stage renal failure patients. Clin Chem 45:1548–1556

    Google Scholar 

  • Gajda Z (2003) The concentration of selected elements in femoral head of inhabitants of Silesian region. Doctor of medical sciences dissertation, Zabrze (in Polish)

  • Garcia F, Ortega A, Domingo JL, Corbella J (2001) Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J Environ Sci Health 36:1767–1786. doi:10.1081/ESE-100106258

    Article  CAS  Google Scholar 

  • Gerhardsson L, Englyst V, Lundström NG, Sandberg S, Nordberg G (2002) Cadmium, copper and zinc in tissues of deceased copper smelter workers. J Trace Elem Med Biol 6:261–266. doi:10.1016/S0946-672X(02)80055-4

    Article  Google Scholar 

  • Goyer RA (1995) Nutrition and metal toxicity. Am J Clin Nutr 61:646–650

    Google Scholar 

  • Goyer RA (1997) Toxic and essential metal interaction. Annu Rev Nutr 17:37–50. doi:10.1146/annurev.nutr.17.1.37

    Article  CAS  Google Scholar 

  • Heaney PR (2007) Bone health. Am J Clin Nutr 85:300–303

    Google Scholar 

  • Hisanaga A, Hirata M, Tanaka A, Ishinishi N, Eguchi Y (1988) Variation of trace metals in acient and contemporary Japanes bones. Biol Trace Elem Res 22:221–231. doi:10.1007/BF02916610

    Article  Google Scholar 

  • Honda R, Tsuritani I, Noborisaka Y, Suzuki H, Ishizaki M, Yamada Y (2003) Urinary cadmium excretion is correlated with calcaneal bone mass in Japanese women living in an urban area. Environ Res 91:63–70. doi:10.1016/S0013-9351(02)00035-X

    Article  CAS  Google Scholar 

  • Hu H, Rabinowitz M, Smith D (1998) Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Persp 106:1–8. doi:10.2307/3433626

    Article  CAS  Google Scholar 

  • Hunder G, Javdani J, Elsenhans B, Schümann K (2001) 109Cd accumulation in the calcified parts of rat bones. Toxicology 159:1–10. doi:10.1016/S0300-483X(00)00364-4

    Article  CAS  Google Scholar 

  • Järup L (2002) Cadmium overload and toxicity. Nephrol Dial Transpl 17:35–39

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biogeochemistry of trace elements. Scientific Publishing House PWN 115–135, Varsovia (in Polish)

  • Korrick SA, Schwartz J, Tsaih SW, Hunter DJ, Aro A, Rosner B, Speizer FE, Hu H (2002) Correlates of bone and blood lead levels among middle-aged and elderly women. Am J Epidemiol 156:335–343. doi:10.1093/aje/kwf042

    Article  Google Scholar 

  • Kuo HW, Kuo SM, Chou CH, Lee TC (2000) Determination of 14 elements in Taiwanese bone. Sci Total Environ 255:45–55. doi:10.1016/S0048-9697(00)00448-4

    Article  CAS  Google Scholar 

  • Kwapuliński J, Brodziak B, Bogunia M (2003) Relative changes of elements in the human osseous tissue. Bull Environ Contam Toxicol 70:1089–1096. doi:10.1007/s00128-003-0094-1

    Article  Google Scholar 

  • Lyn P (2003) Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    Google Scholar 

  • Manton IW, Angle RC, Stanek LK, Kuntzelaman D, Reese RY, Kuehnemann JT (2003) Release of lead from bone in pregnancy and lactation. Environ Res 92:139–151. doi:10.1016/S0013-9351(03)00020-3

    Article  CAS  Google Scholar 

  • O’Connor BH, Kerrigan GC, Taylor KR, Morris PD, Wright CR (1980) Levels and temporal trends of trace element concentrations in vertebral bone. Arch Environ Health 35:21–28

    Google Scholar 

  • O’Flaherty JE (1993) Physiologically based models for bone-seeking elements. IV. Kinetics of lead disposition in humans. Toxicol Appl Pharmacol 118:16–29. doi:10.1006/taap.1993.1004

    Article  Google Scholar 

  • Potula V, Kleinbaum D, Kaye W (2006) Lead exposure and spine bone mineral density. J Occup Environ Med 48:556–564. doi:10.1097/01.jom.0000222556.89044.90

    Article  CAS  Google Scholar 

  • Qi Ying M, Logan TJ, Traina SJ, Ryan JA (1993) In situ lead immobilization by apatite. Environ Sci Technol 27:1803–1810. doi:10.1021/es00046a007

    Article  Google Scholar 

  • Ronis MJJ, Aronson J, Gao GG, Hogue W, Skinner RA, Badger TM, ChK Lumpkin (2001) Skeletal effects of developmental lead exposure in rats. Toxicol Sci 62:321–329. doi:10.1093/toxsci/62.2.321

    Article  CAS  Google Scholar 

  • Rosa GM, Lucas GQ, Lucas ON (2008) Cigarette smoking and alveolar bone in young adults: a study using digitized radiographs. J Periodontol 79:232–244. doi:10.1902/jop.2008.060522

    Article  Google Scholar 

  • Seńczuk W (2006) Contemporary toxicology. PZWL, Warsaw

    Google Scholar 

  • Sirola J, Kroger H, Honkanen R, Sandini L, Tuppurainen M, Jurvelin JS, Saarikoski S (2003) Smoking may impair the bone protective effects of nutritional calcium: a population-based approach. J Bone Miner Res 18:1036–1042. doi:10.1359/jbmr.2003.18.6.1036

    Article  CAS  Google Scholar 

  • Todd AC, Parsons PJ, Tang S, Moshier EL (2001) Individual variability in human tibia lead concentration. Environ Health Persp 109:1139–1143. doi:10.2307/3454861

    Article  CAS  Google Scholar 

  • Vahter M, Berglund M, Åkesson A, Liden C (2002) Metals and women’s health. Environ Res A 88:145–155. doi:10.1006/enrs.2002.4338

    Article  CAS  Google Scholar 

  • Zaksas NP, Sultangazieva TT, Gerasimov VA (2008) Determination of trace elements in bone by two-jet plasma atomic emission spectrometry. J Anal Bioanal Chem 391:687–693. doi:10.1007/s00216-008-2050-8

    Article  CAS  Google Scholar 

  • Zhang ZW, Qu JB, Watanabe T, Shimbo S, Moon CS, Iked M (1999) Exposure of citizens in China and in Japan to lead and cadmium: a comparative study. Toxicol Lett 108:167–172. doi:10.1016/S0378-4274(99)00085-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Brodziak-Dopierala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodziak-Dopierala, B., Kwapulinski, J., Kusz, D. et al. Interactions Between Concentrations of Chemical Elements in Human Femoral Heads. Arch Environ Contam Toxicol 57, 203–210 (2009). https://doi.org/10.1007/s00244-008-9228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9228-0

Keywords

Navigation