Skip to main content
Log in

Responses of a Free-Living Marine Nematode Community to Mercury Contamination: Results from Microcosm Experiments

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

A microcosm experiment was used to examine the effects of mercury contamination on a free-living nematode community in a Tunisian lagoon. Sediments were contaminated with three mercury concentrations (low, 0.084 ppm; medium, 0.167 ppm; and high, 0.334 ppm), and effects were examined after 60 days. Results from multiple-comparison tests showed significant differences between nematode assemblages from undisturbed control and those from mercury treatments. Most univariate measures decreased significantly with increasing level of Hg contamination. Results from multivariate analyses of the species abundance data demonstrated that responses of nematode species to mercury contamination were varied: Araeolaimus bioculatus was eliminated at all the mercury doses tested and seemed to be an intolerant species to mercury contamination; Marylynnia stekhoveni increased at low and medium concentrations and appeared to be an “opportunistic” species at these doses, whereas Prochromadorella neapolitana, which increased at all doses tested (0.084, 0.167, and 0.334 ppm), seemed to be a “mercury-resistant” species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson HA, Hanrahan LP, Smith A, Draheim L, Kanarek M, Olsen J (2004) The role of sport-fish consumption advisories in mercury risk communication: a 1998–1999 12-state survey of women age 18–45. Environ Res 95:315–324. doi:10.1016/j.envres.2004.01.004

    Article  CAS  Google Scholar 

  • Austen MC, McEvoy AJ (1997) The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. J Exp Mar Biol Ecol 211:247–261. doi:10.1016/S0022-0981(96)02734-7

    Article  CAS  Google Scholar 

  • Austen MC, Somerfield PJ (1997) A community level sediment bioassay applied to an estuarine heavy metal gradient. Mar Environ Res 43:315–328. doi:10.1016/S0141-1136(96)00094-3

    Article  Google Scholar 

  • Austen MC, McEvoy AJ, Warwick RM (1994) The specificity of meiobenthic community responses to different pollutants: results from microcosm experiments. Mar Pollut Bull 28:557–563. doi:10.1016/0025-326X(94)90075-2

    Article  CAS  Google Scholar 

  • Beyrem H, Mahmoudi E, Essid N, Hedfi A, Boufahja F, Aissa P (2007) Individual and combined effects of cadmium and diesel on a nematode community in a laboratory microcosm experiment. Ecotoxicol Environ Safe 68:412–418. doi:10.1016/j.ecoenv.2006.12.007

    Article  CAS  Google Scholar 

  • Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680. doi:10.2307/2265490

    Article  Google Scholar 

  • Chou CL, Paon LA, Moffatt JD (2002) Cadmium, copper, manganese, silver, and zinc in rock crab (Cancer irroratus) from highly copper contaminated sites in the inner Bay of Fundy, Atlantic Canada. Bull Environ Contam Toxicol 68:885–892. doi:10.1007/s00128-002-0037-2

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Coull BC, Chandler GT (1992) Pollution and meiofauna: field, laboratory and mesocosm studies. Oceanogr Mar Biol 30:191–271

    Google Scholar 

  • De Groot AJ (1995) Metal and sediments: a global perspective. In: Allen HE (ed) Metal contaminated aquatic sediments. Ann Arbor Press, Ann Arbor, MI, pp 1–20

    Google Scholar 

  • Depledge MH, Weeks JM, Bjerregaard P (1994) Heavy metals. In: Calow P (ed) Handbook of ecotoxicology. Blackwell Scientific, Oxford, pp 79–105

    Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for non-ionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583. doi:10.1897/1552-8618(1991)10[1541:TBFESQ]2.0.CO;2

    Article  CAS  Google Scholar 

  • Donazzolo R (1984) Heavy metals content and lithological properties of recent sediments in the Northern Adriatic. Mar Pollut Bull 15:93–101. doi:10.1016/0025-326X(84)90444-2

    Article  CAS  Google Scholar 

  • Fernandez-Leborans G, Herrero YO (2000) Toxicity and bioaccumulation of lead and cadmium in marine protozoan communities. Ecotoxicol Environ Safe 47:266–267. doi:10.1006/eesa.2000.1944

    Article  CAS  Google Scholar 

  • Fichet D, Boucher G, Radenac G, Miramand P (1999) Concentration and mobilisation of Cd, Cu, Pb and Zn by meiofauna populations living in harbour sediment: their role in the heavy metal flux from sediment to food web. Sci Total Environ 243/244:263–272. doi:10.1016/S0048-9697(99)00401-5

    Article  CAS  Google Scholar 

  • González F, Schalscha E, Becerra J, Silva M (2002) Mercury in a marine trophic chain. Bull Environ Contam Toxicol 68:448–454. doi:10.1007/s001280275

    Article  CAS  Google Scholar 

  • Guo Y, Somerfield PJ, Warwick RM, Zhang Z (2001) Large-scale patterns in the community structure and biodiversity of free living nematodes in the Bohai Sea, China. J Mar Biol Assoc UK 81:755–763. doi:10.1017/S0025315401004568

    Article  Google Scholar 

  • Gyedu-Ababio TK, Baird D (2006) Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol Environ Safe. 63:443–450. doi:10.1016/j.ecoenv.2005.01.010

    Article  CAS  Google Scholar 

  • Hernandez LM, Gomara B, Fernandez M, Jimenez B, Gonzalez MJ, Baos R, Hiraldo F, Ferrer M, Benito V, Suner MA, Devesa V, Munoz O, Montoro R (1999) Accumulation of heavy metals and As in wetland birds in the area around Donana national park affected by the Aznacollar toxic spill. Sci Total Environ 242:293–308. doi:10.1016/S0048-9697(99)00397-6

    Article  CAS  Google Scholar 

  • Houserova P, Hedbavny J, Matejicek D, Kracmar S, Sitko J (2005) Determination of total mercury in muscle, intestines, liver and kidney tissues of cormorant (Phalacrocorax carbo), great crested grebe (Podiceps cristatus) and Eurasian buzzard (Buteo buteo). Veterinarni Medicina-Czech 50:61–68

    CAS  Google Scholar 

  • Howell R (1982) Levels of heavy metal pollutants in two species of marine nematodes. Mar Pollut Bull 13:396–398. doi:10.1016/0025-326X(82)90117-5

    Article  CAS  Google Scholar 

  • Howell R (1983) Heavy metals in marine nematodes: uptake, tissue distribution and loss of copper and zinc. Mar Pollut Bull 14:263–268. doi:10.1016/0025-326X(83)90170-4

    Article  CAS  Google Scholar 

  • Itow T, Loveland RE, Botton ML (1998) Developmental abnormalities in horseshoe crab embryos caused by exposure to heavy metals. Arch Environ Contam Toxicol 35:33 40. doi:10.1007/s002449900345

    Google Scholar 

  • Kuiper J (1981) Fate and effects of mercury in marine plankton communities in experimental enclosures. Ecotoxicol Environ Safe 5:106–134. doi:10.1016/0147-6513(81)90050-6

    Article  CAS  Google Scholar 

  • Langston WJ, Spence SK (1994) Metal analysis. In: Calow P (ed) Handbook of ecotoxicology. Blackwell Scientific, Oxford, pp 45–78

    Google Scholar 

  • Long ER (1992) Ranges in chemical concentrations in sediments associated with adverse biological effects. Mar Pollut Bull 24:38–45. doi:10.1016/0025-326X(92)90315-W

    Article  CAS  Google Scholar 

  • MacRae T, Pandey A (1991) Effects of metals on early life stages of the brine shrimp, Artemia: a developmental toxicity assay. Arch Environ Contam Toxicol 20:247–252. doi:10.1007/BF01055911

    Article  CAS  Google Scholar 

  • Mahmoudi E, Essid N, Beyrem H, Hedfi A, Boufahja F, Vitiello P, Aissa P (2007) Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J Exp Mar Biol Ecol 343:317–326. doi:10.1016/j.jembe.2006.12.017

    Article  CAS  Google Scholar 

  • Martincic D, Kwokal Z, Stoeppler MM (1989) Trace metals in sediments from the Adriatic Sea. Sci Total Environ 84:135–147

    Article  CAS  Google Scholar 

  • Millward RN, Carman KR, Fleeger JW, Gambrell RP, Portier R (2004) Mixtures of metals hydrocarbons elicit complex responses by a benthic invertebrate community. J Exp Mar Biol Ecol 310:115–130. doi:10.1016/j.jembe.2004.04.004

    Article  CAS  Google Scholar 

  • Mulsow S, Povince P, Wyse E, Benmansour M, Sammir B, Chafik A (2001) Trace elements, heavy metals and Pb isotopic ratios in marine sediments of the South Mediterranean Sea (Morroca). Rapp Comm Int Mer Médit 36:147

    Google Scholar 

  • NOAA (1999) Screening Quick Reference Table (SQuiRTs). Coastal Protection & Restoration Division. Hazmat report 99–1. Updated February 2004

  • Palanques A, Diaz JI (1994) Anthropogenic heavy metal pollution in the sediments of the Barcelona continental shelf (northwestern Mediterranean). Mar Environ Res 38:17–31. doi:10.1016/0141-1136(94)90043-4

    Article  CAS  Google Scholar 

  • Perez D (1999) Mercury levels in mole crabs Hippa cubensis, Emerita brasiliensis, E. portoricensis, and Lepidopa richmondi (Crustacea: Decapoda: Hippidae) from a sandy beach at Venezuela. Bull Environ Contam Toxicol 63:320–326. doi:10.1007/s001289900983

    Article  CAS  Google Scholar 

  • Platt HM, Warwick RM (1983) Free-living marine nematodes. Part I. British Enoplids. Synopses of the British Fauna No. 28. Cambridge University Press, Cambridge

    Google Scholar 

  • Platt HM, Warwick RM (1988) Free living marine nematodes. Part II. British Chromadorids. Synopses of the British Fauna No. 38. E. J. Brill, Leiden

    Google Scholar 

  • Rainbow PS (1988) The significance of trace metal concentrations in decapods. Symp Zool Soc London 59:291–313

    Google Scholar 

  • Rodriguez EM, Medesani DA (1994) Pathological lesions in larvae hatched from ovigerous females of Chasmagnathus granulatus (Decapoda, Brachyura) exposed to cadmium. Experientia 50:975–977. doi:10.1007/BF01923491

    Article  CAS  Google Scholar 

  • Rouibah M (2001) Etat de pollution par les metaux lourds dans le port de Djen-Djen et le port de Jijel (Algérie). Rapp Comm Int Mer Médit 36:160

    Google Scholar 

  • Samson JC, Shenker J (2000) The teratogenic effects of methylmercury on early developpement of the zebrafish, Danio rerio. Aquat Toxicol 48:343–354. doi:10.1016/S0166-445X(99)00044-2

    Article  CAS  Google Scholar 

  • Sánchez MV, Cahansky AV, López Greco LS, Rodríguez EM (2005) Toxicity of mercury during the embryonic development of Chasmagnathus granulatus (Brachyura, Varunidae). Environ Res 99:72–78. doi:10.1016/j.envres.2004.09.005

    Article  CAS  Google Scholar 

  • Schratzberger M, Daniel F, Wall CM, Kilbride R, Macnaughton SJ, Boyd SE, Rees HL, Lee K, Swannell RPJ (2003) Response of estuarine meio- and macrofauna to in situ bioremediation of oil-contaminated sediment. Mar Pollut Bull 46:430–433. doi:10.1016/S0025-326X(02)00465-4

    Article  CAS  Google Scholar 

  • Suderman K, Thistle D (2003) Spills of fuel oil #6 and Orimulsion can have indistinguishable effects on the benthic meiofauna. Mar Pollut Bull 46:49–55. doi:10.1016/S0025-326X(02)00235-7

    Article  CAS  Google Scholar 

  • Tian-ye C, McNaught DC (1992) Toxicity of methylmercury to Daphnia pulex. Bull Environ Contam Toxicol 49:606–612. doi:10.1007/BF00196306

    Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes. Part III. British Monhysterida. Synopses of the British fauna No. 53. Field Studies Council, Shrewsbury, UK

    Google Scholar 

  • Wieser W (1960) Benthic studies in Buzzards Bay. II: The meiofauna. Limnol Oceanogr 5:121–137

    Article  Google Scholar 

  • Yoshida M, Hamdi H, Abdulnasser I, Jedidi N (2004) Contamination of potentially toxic elements (PTEs) in Bizerte lagoon bottom sediments, surface sediment and sediment repository. In: Ghrabi A, Yoshida M (eds) Study on environmental pollution of Bizerte Lagoon. INRST-JICA, Tunis, pp 31–54

    Google Scholar 

  • Zahir F, Rizwi SJ, Haq SK, Khanb RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20:351–360. doi:10.1016/j.etap.2005.03.007

    Article  CAS  Google Scholar 

  • Zillioux EJ, Porcella DB, Benoit JM (1993) Mercury cycling and effects in freshwater wetland ecosystems. Environ Toxicol Chem 12:2245–2264. doi:10.1897/1552-8618(1993)12[2245:MCAEIF]2.0.CO;2

    Article  CAS  Google Scholar 

  • Zolfaghari G, Esmaili-Sari A, Ghasempouri SM, Kiabi BH (2007) Examination of mercury concentration in the feather of 18 species of birds in southwest Iran. Environ Res 104:258–265. doi:10.1016/j.envres.2006.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Pierre Vitiello of the Oceanography Institute of Marseille, France, for assistance with nematode species identification. Thanks go also to Nabiha Mahmoudi-Ouerfelli for assistance and advice with mercury contamination of sediment and two anonymous referees for provision of constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermi, M., Mahmoudi, E., Beyrem, H. et al. Responses of a Free-Living Marine Nematode Community to Mercury Contamination: Results from Microcosm Experiments. Arch Environ Contam Toxicol 56, 426–433 (2009). https://doi.org/10.1007/s00244-008-9217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9217-3

Keywords

Navigation