Skip to main content
Log in

Effects of Phenanthrene- and Metal-Contaminated Sediment on the Feeding Activity of the Harpacticoid Copepod, Schizopera knabeni

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The effects of sediments contaminated with sublethal concentrations of phenanthrene (PAH) and metals (Cd, Hg, Pb) were evaluated in relation to their influence on the feeding activity of a harpacticoid copepod, Schizopera knabeni. A metal mixture (at the ratio of 5Pb:3Cd:2Hg) and Cd alone reduced grazing rates of S. knabeni feeding on 14C-labeled microalgae. Cadmium alone and Cd combined with phenanthrene significantly decreased grazing rates of S. knabeni at Cd concentrations above 49 mg kg−1 dry sediment. No grazing was observed in 98, 106, or 157 mg kg−1 dry sediment Cd alone or in sediment contaminated with phenanthrene (98 mg kg−1 dry sediment) combined with Cd at these concentrations. Phenanthrene alone also caused a significant decrease (55%) in S. knabeni grazing rates. Feeding ceased above 344 mg kg−1 dry sediment of the metal mixture alone and combined with phenanthrene. Results were consistent with an independent effect on feeding when Cd and phenanthrene were combined. When other metals were added (Pb and Hg) to the mixture, results were consistent with an additive influence on feeding rate. Because the underlying mechanisms of toxicity for metals and PAH are probably different, our observations suggest that reductions in grazing probably did not directly contribute to the lethal effects of phenanthrene or metals. The absence of interactive effects on feeding suggests that metal-PAH interactive effects on lethality have a different underlying mechanism and that reductions in grazing probably did not directly contribute to the lethality effects of phenanthrene or metals in S. knabeni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altenberger R, Walter H, Grote M (2004) What contributed to the combined effect of a complex mixture? Environ Sci Technol 38:6353–6362. doi:10.1021/es049528k

    Article  CAS  Google Scholar 

  • Broderius SJ, Kahl MD (1991) Modeling the joint toxicity of xenobiotics to aquatic organisms: basic concepts and approaches. Aquat Toxicol 14:107–127

    Google Scholar 

  • Broderius SJ, Kahl MD, Hoglund MD (1995) Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals. Environ Toxicol Chem 14:1591–1605. doi:10.1897/1552-8618(1995)14[1591:UOJTRT]2.0.CO;2

    Article  CAS  Google Scholar 

  • Cassee FR, Groten JP, van Bladeren PJ, Feron VJ (1998) Toxicological evaluation and risk assessment of chemical mixtures. Crit Rev Toxicol 28:73–101. doi:10.1080/10408449891344164

    Article  CAS  Google Scholar 

  • Chandler GT (1986) High-density culture of meiobenthic harpacticoid copepods within a muddy sediment substrate. Can J Fish Aquat Sci 43:53–59

    Article  Google Scholar 

  • Cowles TJ, Remillard JF (1983) Effects of exposure to sublethal concentrations of crude oil on the copepod Centropages hamatus. I. Feeding and egg production. Mar Biol 78:45–51. doi:10.1007/BF00392970

    CAS  Google Scholar 

  • Daskalakis KD, O’Connor TP (1995) Distribution of chemical concentrations in US coastal and estuarine sediment. Mar Environ Res 40:381–398. doi:10.1016/0141-1136(94)00150-N

    Article  CAS  Google Scholar 

  • Di Giulio RT, Benson WH, Sanders BM, Van Veld PA (1995) Biochemical mechanisms: metabolism, adaptations and toxicity. In: Rand GM (ed) Fundamentals of aquatic toxicology. Taylor and Francis, Washington, DC, pp 523–561

    Google Scholar 

  • DiToro DM, McGrath JA (2000) Technical basis for narcotic chemicals and polynuclear aromatic hydrocarbon criteria. II. Mixtures and sediments. Environ Toxicol Chem 19:1971–1982. doi :10.1897/1551-5028(2000)019<1971:TBFNCA>2.3.CO;2

    Article  CAS  Google Scholar 

  • DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583. doi:10.1897/1552-8618(1991)10[1541:TBFESQ]2.0.CO;2

    Article  CAS  Google Scholar 

  • Donkin P, Widdows J, Evans SV, Worrall CM, Carr M (1989) Quantitative structure-activity relationships for the effect of hydrophobic organic chemicals on rate of feeding by mussels (Mytilus edulis). Aquat Toxicol 14:277–294. doi:10.1016/0166-445X(89)90021-0

    Article  CAS  Google Scholar 

  • Escher BI, Hermens JLM (2002) Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36:4201–4217. doi:10.1021/es015848h

    Article  CAS  Google Scholar 

  • Faust MR, Altenberger R, Grimme LH (2000) Predictive assessment of the aquatic toxicology of multiple chemical mixtures. J Environ Quality 29:1063–1064

    Article  CAS  Google Scholar 

  • Fleeger JW, Gust KA, Marlborough SJ, Tita G (2007) Mixture of metals and polynuclear aromatic hydrocarbons elicit complex, nonadditive toxicological interactions in meiobenthic copepods. Env Toxicol Chem 26:1677–1685. doi:10.1897/06-397R.1

    Article  CAS  Google Scholar 

  • Geiger JG, Buikema AL (1981) Oxygen consumption and filtering rate of Daphnia pulex after exposure to water-soluble fractions of naphthalene, phenanthrene, No 2. fuel oil, and coal tar creosote. Bull Environ Contam Toxicol 27:783–789. doi:10.1007/BF01611096

    Article  CAS  Google Scholar 

  • Gust KA, Fleeger JW (2005) Exposure-related effects on Cd bioaccumulation explain toxicity of Cd-phenanthrene mixtures in Hyalella azteca. Environ Toxicol Chem 24:2818–2926. doi:10.1897/05-005R.1

    Article  Google Scholar 

  • Gust KA, Fleeger JW (2006) Exposure to cadmium-phenanthrene mixtures elicits complex toxic responses in the freshwater tubificid oligochaete, Ilyodrilus templetoni. Arch Environ Contam Toxicol 51:54–60. doi:10.1007/s00244-005-1075-7

    Article  CAS  Google Scholar 

  • Gust KA (2005) Ecotoxicology and metal-hydrocarbon mixtures in benthic invertebrates. Ph.D. thesis, Louisiana State University, Baton Rouge

  • Kennicutt MC, Boothe PN, Wade TL, Sweet ST, Rezak R, Kelley FJ, Brooks JM, Presley BJ, Wiesenburg DA (1996) Geochemical patterns in sediments near offshore production platforms. Can J Fish Aquat Sci 53:2554–2566. doi:10.1139/cjfas-53-11-2554

    Article  CAS  Google Scholar 

  • Long ER (1992) Ranges in chemical concentrations in sediments associated with adverse biological effects. Mar Pollut Bull 24(1):38–45. doi:10.1016/0025-326X(92)90315-W

    Article  CAS  Google Scholar 

  • Long ER, Macdonald, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manage 19(1):81–97. doi:10.1007/BF02472006

  • Lotufo GR (1997) Toxicity of sediment-associated PAHs to an estuarine copepod: effects on survival, feeding, reproduction and behavior. Mar Environ Res 44:149–166. doi:10.1016/S0141-1136(96)00108-0

    Article  CAS  Google Scholar 

  • Lotufo GR, Fleeger JW (1996) Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilius hoffmeisteri (Oligochaeta: Tubificidae). Environ Toxicol Chem 15:1508–1516. doi :10.1897/1551-5028(1996)015<1508:TOSAPA>2.3.CO;2

    Article  CAS  Google Scholar 

  • Millward RN, Carman KR, Fleeger JW, Gambrell RP, Powell RT, Rouse MA (2001) Linking ecological impact to metal concentrations and speciation: a microcosm experiment using a salt marsh meiofaunal community. Environ Toxicol Chem 20:2029–2037. doi :10.1897/1551-5028(2001)020<2029:LEITMC>2.0.CO;2

    Article  CAS  Google Scholar 

  • Pace MC, Carman KR (1996) Interspecific differences among meiobenthic copepods in the use of microalgal food resources. Mar Ecol Prog Ser 143:77–86. doi:10.3354/meps143077

    Article  Google Scholar 

  • Peterson CH, Kennicutt MCII, Green PH, Montagna P, Harper DE, Powell EN, Roscigno PF (1996) Ecological consequences of environmental perturbations associated with offshore hydrocarbon production: a perspective on long term exposures in the Gulf of Mexico. Can J Fish Aquat Sci 53:2637–2654. doi:10.1139/cjfas-53-11-2637

    Article  CAS  Google Scholar 

  • Price B, Borgert CJ, Wells CS, Simon GS (2002) Assessing toxicity of mixtures: the search for economical study designs. Hum Ecol Risk Assess 8:305–326. doi:10.1080/20028091056935

    Article  CAS  Google Scholar 

  • Rand GM, Wells PG, McCarty LS (1995) Introduction to aquatic toxicology. In: Rand GM (ed) Fundamentals of aquatic toxicology, 2nd edn. Taylor and Francis, Washington, DC, pp 3–66

    Google Scholar 

  • Reible DD, Popov V, Valsaraj KT, Thibodeaux LJ, Lin F, Dikshit M, Todaro MA, Fleeger JW (1996) Contaminant fluxes from sediment due to tubificid oligochaete bioturbation. Water Res 30:704–714. doi:10.1016/0043-1354(95)00187-5

    Article  CAS  Google Scholar 

  • Selck H, Decho AW, Forbes VE (1999) Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitella sp. I. Environ Toxicol Chem 18:1289–1297. doi :10.1897/1551-5028(1999)018<1289:EOCMEA>2.3.CO;2

  • Stromgren T, Nielsen MV, Reiersen L (1993) The effect of hydrocarbons and drilling fluids on the fecal pellet production of the deposit feeder Abra alba. Aquat Toxicol 24:275–286. doi:10.1016/0166-445X(93)90076-D

    Article  Google Scholar 

  • Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, Dewitt TH, Redmond MS, Ferraro SP (1995) ΣPAH: a model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments. Environ Toxicol Chem 14:1977–1987. doi:10.1897/1552-8618(1995)14[1977:PAMTPT]2.0.CO;2

    Article  CAS  Google Scholar 

  • U.S. EPA (1996) Test methods for evaluating solid waste, vol 1b. Laboratory manual for physical and chemical methods SW 846. U.S. Environmental Protection Agency. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • Van Wezel AP, Opperhuizen A (1995) Narcosis due to environmental pollutants in aquatic organisms: residue-based toxicity, mechanisms, and membrane burdens. Crit Rev Toxicol 25:255–279. doi:10.3109/10408449509089890

    Article  Google Scholar 

  • Viarengo A, Moore MN, Mancinelli G, Mazzucotelli A, Pipe RK, Farrar SV (1987) Metallothioneins and lysosomes in metal toxicity and accumulation in marine mussels—the effect of cadmium in the presence and absence of phenanthrene. Mar Biol 94:251–257. doi:10.1007/BF00392937

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andrea White, Eric Greber, Hitesh Chheda, and Carey Gelpi for their help in conducting experiments. The authors are grateful to Dr. Robert Gambrel for the metal analyses and to Buffy Ashton for the phenanthrene analysis. We are also grateful to Dr. Michael Sullivan for his helpful comments on an early version of the manuscript. Comments by three anonymous reviewers substantially improved the manuscript. Funding was provided by the Minerals Management Service, contract 1435-01-99-CA-30951-85251. This article was prepared under contract between the Minerals Management Service (MMS) and Louisiana State University and A&M College, and is from the Ph.D. thesis of Soraya Silva. This article has been technically reviewed by the MMS and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya J. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, S.J., Carman, K.R., Fleeger, J.W. et al. Effects of Phenanthrene- and Metal-Contaminated Sediment on the Feeding Activity of the Harpacticoid Copepod, Schizopera knabeni . Arch Environ Contam Toxicol 56, 434–441 (2009). https://doi.org/10.1007/s00244-008-9197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9197-3

Keywords

Navigation