Skip to main content
Log in

Survey of Organosilicone Compounds, Including Cyclic and Linear Siloxanes, in Personal-Care and Household Products

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The determination of organosiloxanes in consumer products is important for the evaluation and characterization of sources of human and environmental exposures. In this study, we determined concentrations of cyclic siloxanes [octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6)], tetradecamethylcycloheptasiloxane (D7)] and linear siloxanes (L4 to L14) in a variety of consumer products (n = 76), including hair-care products, skin lotions, body washes, cosmetics, nursing nipples (i.e., pacifiers), cookware, and household sanitation products such as cleansers and furniture polishes, using gas chromatography–mass spectrometry with selected ion monitoring. Prior to the analysis of samples, a method was developed to reduce the contamination arising from organosiloxanes present in certain gas chromatograph (GC) parts, such as the inlet septum; use of a Restek BTO septum at an inlet temperature of 200°C gave the lowest background level (D4: 0.8 pg; D5: 0.3 pg; D6: 0.2 pg). Concentrations of cyclic siloxanes in consumer products analyzed ranged from <0.35 to 9380 μg/g, from <0.39 to 81,800 μg/g, from <0.33 to 43,100 μg/g, and from <0.42 to 846 μg/g for D4, D5, D6, and D7, respectively. Concentrations of linear siloxanes varied from <0.059 to 73,000 μg/g. More than 50% of the samples analyzed contained D4, D5, or D6. Cyclic siloxanes were predominant in most of the sample categories; D5 was predominant in hair-care products, skin lotions, and cosmetics; D6 or D7 was predominant in rubber products, including nipples, cookware, and sealants. Potential daily exposure to total organosiloxanes (sum of cyclic and linear siloxanes) from the use of personal-care products by adult women in the United States has been estimated to be 307 mg. Significant positive correlations (p < 0.01) existed in our study between D4 and D7, D4 and linear siloxanes, D5 and D6, and D5 and linear siloxanes. The correlations can be related to the composition of organosiloxanes used in consumer products. The results of our study suggest that a wide variety of consumer products that are used on a daily basis contain cyclic and linear siloxanes and these products can contribute considerably to human exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RB, Kochs P, Chandra G (1997) Organosilicon materials. In: Chandra G (ed) The handbook of environmental chemistry, Springer-Verlag, New York, pp 1–25

    Google Scholar 

  • Andersen ME, Sarangapani R, Reitz RH, Gallavan RH, Dobrev ID, Plotzke KP (2001) Physiological modeling reveals novel pharmacokinetic behavior for inhaled octamethylcyclotetrasiloxane in rats. Toxicol Sci 60:214–231

    Article  CAS  Google Scholar 

  • Burns-Naas LA, Mast RW, Meeks RG, Mann PC, Thevenaz P (1998) Inhalation toxicology of decamethylcyclopentasiloxane (D5) following a 3-month nose-only exposure in Fischer 344 rats. Toxicol Sci 43:230–240

    CAS  Google Scholar 

  • Burns-Naas LA, Meeks RG, Kolesar GB et al (2002) Inhalation toxicology of octamethylcyclotetrasiloxane (D-4) following a 3-month nose-only exposure in Fischer 344 rats. Int J Toxicol 21:39–53

    Article  CAS  Google Scholar 

  • de Zeeuw J, (2005) How to minimize septum problems in GC. Am Lab 37:18–19

    Google Scholar 

  • Dorn SB, Skelly Frame EM (1994) Development of a high-performance liquid chromatographic-inductively coupled plasma method for speciation and quantification of silicones: from silanols to polysiloxanes. Analyst 119:1687–1694

    Article  CAS  Google Scholar 

  • Flassbeck D, Pfleiderer B, Grumping R, Hirner AV (2001) Determination of low molecular weight silicones in plasma and blood of women after exposure to silicone breast implants by GC/MS. Anal Chem 73:606–611

    Article  CAS  Google Scholar 

  • Flassbeck D, Pfleiderer B, Klemens P, Heumann KG, Eltze E, Hirner AV (2003) Determination of siloxanes, silicon, and platinum in tissues of women with silicone gel-filled implants. Anal Bioanal Chem 375:356–362

    CAS  Google Scholar 

  • Granchi D, Cavedagna D, Ciapetti G et al (1995) Silicone breast implants: the role of immune-system on capsular contracture formation. J Biomed Mater Res 29:197–202

    Article  CAS  Google Scholar 

  • Hall AD, Patel M (2006) Thermal stability of foamed polysiloxane rubbers: headspace analysis using solid phase microextraction and analysis of solvent extractable material using conventional GC-MS. Polym Degrad Stabil 91:2532–2539

    Article  CAS  Google Scholar 

  • Hayden JF, Barlow SA (1972) Structure-activity relationships of organosiloxanes and the female reproductive system. Toxicol Appl Pharm 21:68–79

    Article  CAS  Google Scholar 

  • He B, Rhodes-Brower S, Miller MR et al (2003) Octamethylcyclotetrasiloxane exhibits estrogenic activity in mice via ER alpha. Toxicol Appl Pharm 192:254–261

    Article  CAS  Google Scholar 

  • Hobson JF, Atkinson R, Carter WPL (1997) Organosilicon materials. In: Chandra G (ed) The handbook of environmental chemistry, Springer-Verlag, New York, pp 137–179

    Google Scholar 

  • Horii Y, Reiner JL, Loganathan BG, Senthil Kumar K, Sajwan K, Kannan K (2007) Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA. Chemosphere 68:2011–2020

    Article  CAS  Google Scholar 

  • Jovanovic ML, McMahon JM, McNett DA, Tobin JM, Plotzke KP (2008) In vitro and in vivo percutaneous absorption of 14C-octamethylcyclotetrasiloxane (14C-D4) and 14C-decamethylcyclopentasiloxane (14C-D5). Regul Toxicol Pharm 50:239–248

    Article  CAS  Google Scholar 

  • Kala SV, Lykissa ED, Lebovitz RM (1997) Detection and characterization of poly(dimethylsiloxane)s in biological tissues by GC/AED and GC/MS. Anal Chem 69:1267–1272

    Article  CAS  Google Scholar 

  • Kala SV, Lykissa ED, Neely MW, Lieberman MW (1998) Low molecular weight silicones are widely distributed after a single subcutaneous injection in mice. Am J Pathol 152:645–649

    CAS  Google Scholar 

  • Kawamura Y, Nakajima A, Mutsuga M, Yamada T, Maitani T (2001) Residual chemicals in silicone rubber products for food contact use. J Food Hygienic Soc 42:316–321 (in Japanese)

    CAS  Google Scholar 

  • Lieberman MW, Lykissa ED, Barrios R, Ou CN, Kala G, Kala SV (1999) Cyclosiloxanes produce fatal liver and lung damage in mice. Environ Health Perspect 107:161–165

    Article  CAS  Google Scholar 

  • Loretz LJ, Api AM, Babcock L et al (2008) Exposure data for cosmetic products: facial cleanser, hair conditioner, and eye shadow. Food Chem Toxicol 46:1516–1524

    Article  CAS  Google Scholar 

  • Loretz L, Api AM, Barraj L et al (2006) Exposure data for personal care products: hairspray, spray perfume, liquid foundation, shampoo, body wash, and solid antiperspirant. Food Chem Toxicol 44:2008–2018

    Article  CAS  Google Scholar 

  • Loretz LJ, Api AM, Barraj LM et al (2005) Exposure data for cosmetic products: lipstick, body lotion, and face cream. Food Chem Toxicol 43:279–291

    Article  CAS  Google Scholar 

  • Lykissa ED, Kala SV, Hurley JB, Lebovitz RM (1997) Release of low molecular weight silicones and platinum from silicone breast implants. Anal Chem 69:4912–4916

    Article  CAS  Google Scholar 

  • Muir DCG, Howard PH (2006) Are there other persistent organic pollutants? A challenge for environmental chemists. Environ Sci Technol 40:7157–7166

    Article  CAS  Google Scholar 

  • Pellenbarg R (1979) Environmental poly(organosiloxanes) (silicones). Environ Sci Technol 13:565–569

    Article  CAS  Google Scholar 

  • Plotzke KP, Crofoot SD, Ferdinandi ES et al (2000) Disposition of radioactivity in Fischer 344 rats after single and multiple inhalation exposure to [C-14]octamethylcyclotetrasiloxane ([C-14]D-4). Drug Metab Dispos 28:192–204

    CAS  Google Scholar 

  • Quinn AL, Regan JM, Tobin JM et al (2007) In vitro and in vivo evaluation of the estrogenic, androgenic, and progestagenic potential of two cyclic siloxanes. Toxicol Sci 96:145–153

    Article  CAS  Google Scholar 

  • Reddy MB, Looney RJ, Utell MJ, Plotzke KP, Andersen ME (2007) Modeling of human dermal absorption of octamethylcyclotetrasiloxane (D-4) and decamethylcyclopentasiloxane (D-5). Toxicol Sci 99:422–431

    Article  CAS  Google Scholar 

  • Reiner JL, Berset JD, Kannan K (2007) Mass flow of polycyclic musks in two wastewater treatment plants. Arch Environ Contam Toxicol 52:451–457

    Article  CAS  Google Scholar 

  • Reiner JL, Kannan K (2006) A survey of polycyclic musks in selected household commodities from the United States. Chemosphere 62:867–873

    Article  CAS  Google Scholar 

  • Siddiqui WH, Stump DG, Reynolds VL, Plotzke KP, Holson JF, Meeks RG (2007) A two-generation reproductive toxicity study of decamethylcyclopentasiloxane (D5) in rats exposed by whole-body vapor inhalation. Reprod Toxicol 23:216–225

    Article  CAS  Google Scholar 

  • Stark FO, Falender JR, Wright AP (1982) Silicones. In: Wilkerson G, Stone FGA, Abel EW (eds) Comprehensive organomatallic chemistry, Pergamon Press, New York, pp 306–360

    Google Scholar 

  • Utell MJ, Gelein R, Yu CP et al (1998) Quantitative exposure of humans to an octamethylcyclotetrasiloxane (D4) vapor. Toxicol Sci 44:206–213

    CAS  Google Scholar 

  • Wang Y (2006) How pierced PTEE/silicone septa affect GC-MS experiments. Am Lab 38:10–12

    CAS  Google Scholar 

  • Watanabe N, Nagase H, Ose Y (1988) Distribution of silicones in water, sediment and fish in Japanese rivers. Sci Total Environ 73:1–9

    Article  CAS  Google Scholar 

  • Watanabe N, Nakamura T, Watanabe E, Sato E, Ose Y (1984) Distribution of organosiloxanes (silicones) in water, sediments and fish from the Nagara River watershed, Japan. Sci Total Environ 35:91–97

    Article  CAS  Google Scholar 

  • Xu S, Chandra G (1999) Fate of cyclic methylsiloxanes in soils. 2. Rates of degradation and volatilization. Environ Sci Technol 33:4034–4039

    Article  CAS  Google Scholar 

  • Xu SH (1999) Fate of cyclic methylsiloxanes in soils. 1. The degradation pathway. Environ Sci Technol 33:603–608

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurunthachalam Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horii, Y., Kannan, K. Survey of Organosilicone Compounds, Including Cyclic and Linear Siloxanes, in Personal-Care and Household Products. Arch Environ Contam Toxicol 55, 701–710 (2008). https://doi.org/10.1007/s00244-008-9172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9172-z

Keywords

Navigation