Effects of Heavy-Metal Stress on Cyanobacterium Anabaena flos-aquae

Article

Abstract

The influence of two metals, copper and cadmium, was studied on the growth and ultrastructures of cyanobacterium Anabaenaflos-aquae grown at three different temperatures: 10°C, 20°C, and 30°C. The highest concentration of chlorophyll a was observed at 20°C and the lowest at 10°C. Both toxic metal ions, Cu2+ and Cd2+, inhibited growth of the tested cyanobacterium. Chlorophyll a concentration decreased with the increase of metal concentration. A 50% decrease in the growth of A. flos-aquae population, compared with the control, was reached at 0.61 mg l−1 cadmium and at 0.35 mg l−1 copper (at 20°C). Copper at all temperatures tested was proven to be more toxic than cadmium. At 3 mg l−1, the lysis and distortion of cells was observed; however, after incubation at 9 mg l−1 cadmium, most of the cells were still intact, and only intrathylakoidal spaces started to appear. Copper caused considerably greater changes in the protein system of A. flos-aquae than did cadmium; in this case, not only phycobilins but also total proteins were destructed. The aim of this study was also to identify the place of metal accumulation and sorption in the tested cyanobacterium. Analysis of the energy-dispersion spectra of the characteristic x-ray radiation of trichomes and their sheaths showed that cadmium was completely accumulated in cells but was not found in the sheath. Spectrum of the isolated sheath after treatment with copper exhibited only traces of the metal, but isolated cells without a sheath showed a high peak of copper.

References

  1. Atri, N, Rai, LC 2003Differential responses of three cyanobacteria to UV-B and Cd (2003)J Microbiol Biotech13544551Google Scholar
  2. Bekasova, OD, Orleanskii, VK, Nikandrow, VV 1999Accumulation of cadmium, titanium and aluminium by the cyanobacterium Nostoc muscorumMicrobiology68751758Google Scholar
  3. Crist, RH, Oberholser, K, Shank, N, Nguyen, M 1981Nature of binding between metallic ions and algal cell wallsEnviron Sci Technol1512121217CrossRefGoogle Scholar
  4. El-Enany, AE, Issa, AA 2000Cyanobacteria as a biosorbent of heavy metals in sewage waterEnviron Toxicol Pharmacol895101CrossRefGoogle Scholar
  5. Fernandez-Piñas, F, Mateo, P, Bonilla, I 1995Ultrastructural changes induced by selected cadmium concentration in the cyanobacterium Nostoc UAM208J Plant Physiol147452456CrossRefGoogle Scholar
  6. Gekeler, W, Grill, E, Winnacker, E-L, Zenk, MH 1988Algae sequester heavy metals via synthesis of phytochelatins complexesArch Microbiol150197202CrossRefGoogle Scholar
  7. Haselkorn, R 1978HeterocystsAnnu Rev Plant Physiol29319344CrossRefGoogle Scholar
  8. Heng, LY, Jusoh, K, Ling, CHM, Idris, M 2004Toxicity of single and combinations of lead and cadmium to the cyanobacteria Anabaena flos-aquaeBull Environ Contam Toxicol72373379CrossRefGoogle Scholar
  9. Issermeyer, H 1952Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im BodenZ Pflanzenern Düng Bodenk5626CrossRefGoogle Scholar
  10. Jeffrey, SW, Humphrey, GF 1975New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplanktonBiochem Physiol Pflanzen167191194Google Scholar
  11. Jensen, TE, Baxter, M, Rachlin, JW, Warkentine, B 1982Uptake of heavy metals by Plectonema boryanum (Cyanophyceae) into cellular components, especially polyphosphate bodies: an X-ray energy dispersive studyEnviron Pollut27119127CrossRefGoogle Scholar
  12. Jensen, TE, Rachlin, JW, Jani, V, Warkentine, B 1986Heavy metal uptake in relation to phosphorus nutrition in Anabaena variabilisEnviron Pollut42261271CrossRefGoogle Scholar
  13. Laemmli, UK 1970Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature227680685CrossRefGoogle Scholar
  14. Lazinsky, D, Sicko-Goad, L 1983Ultrastructural modification of three blue-green algae following heavy metal exposureMicron14257258Google Scholar
  15. Massalski, A, Laube, VM, Kushner, DJ 1981Effects of cadmium and copper on the structure of Ankistrodesmus braunii and Anabaena 7120Microb Ecol7183193CrossRefGoogle Scholar
  16. Mateo, P, Fernandez-Piñas, F, Bonilla, I 1994O2-induced inactivation of nitrogenase as a mechanism for the toxic action of Cd2+ on Nostoc UAM208New Phytol126267272CrossRefGoogle Scholar
  17. Mazur, H, Plinski, M 2003Nodularia spumigena blooms and the occurrence of hepatotoxin in the Gulf of GdanskOceanologia45305316Google Scholar
  18. Pettersson, A, Hällbom, L, Bergman, B 1988Aluminium effects on uptake and metabolism of phosphorus by the cyanobacterium Anabaena cylindricaPlant Physiol86112116CrossRefGoogle Scholar
  19. Rachlin, JW, Jensen, TE, Warkentine, B 1984The toxicological response of the alga Anabaena cylindrica to cadmiumArch Environ Contam Toxico.13143151CrossRefGoogle Scholar
  20. Rachlin, JW, Jensen, TE, Warkentine, B 1985Morphometric analysis of the response of Anabaena flos-aquae and Anabaena variabilis (Cyanophyceae) to selected concentrations of zincArch Environ Contam Toxicol14395402CrossRefGoogle Scholar
  21. Rangsayatorn, N, Upatham, ES, Kruatrachue, M, Pokethitiyook, P, Lanza, GR 2002Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmiumEnviron Pollut1194553CrossRefGoogle Scholar
  22. Rippka, R, Deruelles, J, Waterbury, JB, Herdman, M, Stanier, RY 1979Generic assignments, strain histories and properties of the pure cultures of cyanobacteriaJ Gen Microbiol111161Google Scholar
  23. Sicko-Goad, L, Lazinsky, D 1981Accumulation and cellular effects of heavy metals in benthic and planktonic algaeMicron22289290Google Scholar
  24. Sinha, RP, Singh, N, Kumar, A, Häder, M, Häder, D-P 1996Effects of UV radiation on certain physiological and biochemical processes in cyanobacteriaJ Photochem Photobiol B32107113CrossRefGoogle Scholar
  25. Soria SPC (1988) Untersuchungen zur Schwermetallbelastungen von Perna viridis und Crassostrea iredale aus der Bucht von Manila (Philippinen). Doctoral thesis, Christian-Albrechts-University KielGoogle Scholar
  26. Stricland, JDH, Parsons, TR 1972A practical handbook of seawater analysisBulletin of Fish Research Board of CanadaOttawa, Ontario, CanadaGoogle Scholar
  27. Sunda, WG 1990Trace metal interactions with marine phytoplanktonBiol Oceanogr6411442Google Scholar
  28. Surosz, W, Palinska, KA 2000Ultrastructural changes induced by selected Cd and Cu concentrations in the cyanobacterium Phormidium: Interaction with salinityJ Plant Physiol157643650CrossRefGoogle Scholar
  29. Vymazal, J 1987Toxicity and accumulation of cadmium with respect to algae and cyanobacteria: A reviewToxic Assess2387415Google Scholar
  30. Wray, W, Boulikas, T, Wray, VP, Hancock, R 1981Silver staining of proteins in polyacrylamide gelsAnal Biochem118197203CrossRefGoogle Scholar
  31. Zirino, A, Yamamoto, S 1972A pH-dependent mode for the chemical speciation of copper, zinc, cadmium and lead in seawaterLimnol Oceanogr17661671CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  1. 1.Institute of OceanographyUniversity of GdanskGdyniaPoland
  2. 2.Geomicrobiology, Institute for Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgOldenburgGermany

Personalised recommendations