Comparative Sublethal Toxicity of Nine Pesticides on Olfactory Learning Performances of the Honeybee Apis mellifera

  • A. Decourtye
  • J. Devillers
  • E. Genecque
  • K. Le Menach
  • H. Budzinski
  • S. Cluzeau
  • M. H. Pham-Delègue


Using a conditioned proboscis extension response (PER) assay, honeybees (Apis mellifera L.) can be trained to associate an odor stimulus with a sucrose reward. Previous studies have shown that observations of conditioned PER were of interest for assessing the behavioral effects of pesticides on the honeybee. In the present study, the effects of sublethal concentrations of nine pesticides on learning performances of worker bees subjected to the PER assay were estimated and compared. Pesticides were tested at three concentrations. The highest concentration of each pesticide corresponded to the median lethal dose value (48-h oral LD50), received per bee and per day, divided by 20. Reduced learning performances were observed for bees surviving treatment with fipronil, deltamethrin, endosulfan, and prochloraz. A lack of behavioral effects after treatment with λ -cyalothrin, cypermethrin, τ -fluvalinate, triazamate, and dimethoate was recorded. No-observed-effect concentrations (NOECs) for the conditioned PER were derived for the studied pesticides. Our study shows that the PER assay can be used for estimating sublethal effects of pesticides on bees. Furthermore, comparisons of sensitivity as well as the estimation of NOECs, useful for regulatory purposes, are possible.


  1. Abramson, CI, Aquino, IS, Ramalho, FS, Price, JM 1999The effect of insecticides on learning in the Africanized honey bee (Apis mellifera L.)Arch Environ Contam Toxicol37529535Google Scholar
  2. Abramson, CI, Boyd, BJ 2001An automated apparatus for conditioning proboscis extension in honey bees (Apis mellifera L.)J Entomol Sci367892Google Scholar
  3. Abramson, CI, Squire, J, Sheridan, A, Mulder, PG,Jr 2004The effect of insecticides considered harmless to honey bees (Apis mellifera L.): Proboscis conditioning studies using the insect growth regulators Confirm®2F (Tebufenozide) and Dimilin®2L (Diflubenzuron)Environ Entomol33378388Google Scholar
  4. Barnavon, M 1987Expérimentation en laboratoire et en plein champ du fluvalinate. Principes pour un insecticideDéfense Végétaux2434349Google Scholar
  5. Bendahou, N, Fléché, C, Bounias, M 1999Biological and biochemical effects of chronic exposure to very low levels of dietary cypermethrin (Cymbush) on honeybee colonies (Hymenoptera: Apidae)Ecotoxicol Environ Saf44147153Google Scholar
  6. Bitterman, ME, Menzel, R, Fietz, A, Schäfer, S 1983Classical conditioning proboscis extension in honeybees (Apis mellifera)J Comp Psychol97107119CrossRefPubMedGoogle Scholar
  7. Chalvet-Monfrey K (1996) Synergie entre la deltaméthrine et le prochloraze chez l’abeille (Apis mellifera L.): Hypothèses de mécanismes d’action testées par modélisation. PhD Thesis, University Claude Bernard, Lyon IGoogle Scholar
  8. Cluzeau, S 2002

    Risk assessment of plant protection products on honey bees

    Devillers, JPham-Delègue, MH eds. Honey bees: estimating the environmental impact of chemicalsTaylor and FrancisLondon4255
    Google Scholar
  9. Curé, G, Schmidt, HW, Schmuck, R 2000

    Results of a comprehensive field research programme with the systemic insecticide imidacloprid (Gaucho)

    Belzunces, LPPélissier, CLewis, GB eds. Hazards of pesticides to beesINRA EditionAvignon4959
    Google Scholar
  10. Dechaume-Moncharmont, FX, Decourtye, A, Hennequet, C, Pham-Delègue, MH, Pons, O 2003Statistical analysis of the honeybee survival after chronic exposure to insecticidesEnviron Toxicol Chem2230883094Google Scholar
  11. Decourtye A (2002) Etude de l’impact de produits phytopharmaceutiques sur la survie et l’apprentissage associatif chez l’abeille domestique (Apis mellifera L.). PhD Thesis, University Paris XI, OrsayGoogle Scholar
  12. Decourtye, A, Pham-Delègue, MH 2002

    The proboscis extension response: assessing the sublethal effects of pesticides on the honey bee

    Devillers, JPham-Delègue, MH eds. Honey bees: estimating the environmental impact of chemicalsTaylor and FrancisLondon6784
    Google Scholar
  13. Decourtye, A, Lacassie, E, Pham-Delègue, MH 2003Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the seasonPest Manag Sci59269278Google Scholar
  14. Decourtye, A, Devillers, J, Cluzeau, S, Charreton, M, Pham-Delègue, MH 2004aEffects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditionsEcotoxicol Environ Saf57410419Google Scholar
  15. Decourtye, A, Armengaud, C, Renou, M, Devillers, J, Cluzeau, S, Gauthier, M, Pham-Delègue, MH 2004bImidacloprid impairs memory and brain metabolism in the honey bee (Apis mellifera L.)Pestic Biochem Physiol788392Google Scholar
  16. Devillers, J 2002

    Acute toxicity of pesticides to honey bees

    Devillers, JPham-Delègue, MH eds. Honey bees: estimating the environmental impact of chemicalsTaylor and FrancisLondon5666
    Google Scholar
  17. European and Mediterranean Plant Protection Organisation (EPPO) 1992Guideline on test methods for evaluating the side-effects of plant protection products on honey beesEPPO Bull22203215Google Scholar
  18. European and Mediterranean Plant Protection Organisation (EPPO) 1993Decision-making scheme for the environmental risk assessment of plant protection products. Chapter 10: honeybeesEPPO Bull22203215Google Scholar
  19. Fries, I, Wibran, K 1987Effects on honey-bee colonies following application of the pyrethroids cypermethrin and PP 321 in flowering oilseed rapeAm Bee J127266269Google Scholar
  20. Gough, HJ, MacIndoe, EC 1994The use of dimethoate as a reference compound in laboratory acute toxicity tests on honey bees (Apis mellifera L.) 1981–1992J Apic Res33119125Google Scholar
  21. Koch, H, Weiber, P 1997Exposure of honey bee during pesticide application under field conditionsApidologie28439447Google Scholar
  22. Kuwabara, M 1957Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellificaJ Fac Sci Hokkaido Univ Ser VI Zool13458464Google Scholar
  23. Mamood, AN, Waller, GD 1990Recovery of learning responses by honeybees following a sublethal exposure to permethrinPhysiol Entomol155560Google Scholar
  24. Menzel, R, Greggers, U, Hammer, M 1993

    Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee

    Papaj, DRLewis, AC eds. Insect learningChapman HallNew York79125
    Google Scholar
  25. Menzel, R 1999Memory dynamics in the honeybeeJ Comp Physiol A185323340CrossRefGoogle Scholar
  26. Miniggio C, Borneck R, Arnold G (1990) Etudes des effets à long terme des pesticides chez l’abeille Apis mellifera. Comité de l’Ecologie et de la Gestion du Patrimoine Naturel, Ministère de l’Environnement (SRETIE)Google Scholar
  27. Padilla, S 1995The neurotoxicity of cholinesterase-inhibiting insecticides: past and present evidence demonstrating persistent effectsInhalation Toxicol7903907Google Scholar
  28. Pham-Delègue, MH, Jong, R, Masson, C 1990Effet de l’âge sur la réponse conditionnée d’extension du proboscis chez l’abeille domestiqueC R Acad Sci Paris, Ser III310527532Google Scholar
  29. Pham-Delègue, MH, Decourtye, A, Kaiser, L, Devillers, J 2002Methods to assess the sublethal effects of pesticides on honey beesApidologie33425432Google Scholar
  30. Rafalimanana, H, Kaiser, L, Delpuech, JM 2002Stimulating effects of the insecticide chlorpyrifos on host searching and infestation efficacy of a parasitoid waspPest Manag Sci58321328Google Scholar
  31. Russel, D, Meyer, R, Bukowski, J 1998Potential impact of microencapsulated pesticides on New Jersey apiariesAm Bee J138207210Google Scholar
  32. Sakagami, SF 1953Untersuchungen über die Arbeitsteilung in einem zwergfolk der Honigbiene. Beiträge zur Biologie des Bienenvolkes, Apis mellifera L. IJpn J Zool11117185Google Scholar
  33. Sandoz, JC, Roger, B, Pham-Delègue, MH 1995Olfactory learning and memory in the honeybee: comparison of different classical conditioning procedures of the proboscis extension responseC R Acad Sci Paris Sci vie318749755Google Scholar
  34. Sandoz, JC, Laloi, D, Odoux, JF, Pham-Delègue, MH 2000Olfactory information transfer in the honeybee: compared efficiency of classical conditioning and early exposureAnim Behav5910251034Google Scholar
  35. Schmuck, R, Schöning, R, Stork, A, Schramel, O 2001Risk to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowersPest Manag Sci57225238Google Scholar
  36. Seeley, TD 1982Adaptative significance of the age polyethism schedule in honeybee coloniesBehav Ecol Sociobiol11287293CrossRefGoogle Scholar
  37. Sokal, RR, Rohlf, FJ 1995Biometry: the principles of practice of statistics in biological researchWH Freeman and Co.New YorkGoogle Scholar
  38. Stevenson, JH 1978The acute toxicity of unformulated pesticides to worker honey bees (Apis mellifera L.)Plant Pathol273840Google Scholar
  39. Stone, JC, Abramson, CI, Price, JM 1997Task-dependent effects of dicofol (Kelthane) on learning in the honey bee (Apis mellifera)Bull Environ Contam Toxicol58177183Google Scholar
  40. Suchail, S, Guez, D, Belzunces, LP 2000Characteristics of imidacloprid toxicity in two Apis mellifera subspeciesEnviron Toxicol Chem1919011905CrossRefGoogle Scholar
  41. Suchail, S, Guez, D, Belzunces, LP 2001Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis melliferaEnviron Toxicol Chem2024822486Google Scholar
  42. Takeda, K 1961Classical conditioned response in the honey beeJ Insect Physiol6168179Google Scholar
  43. Taylor, KS, Waller, GD, Crowder, LA 1987Impairment of classical conditioned response of the honey bee (Apis mellifera L.) by sublethal doses of synthetic pyrethroid insecticidesApidologie18243252Google Scholar
  44. Thompson H, Brobyn T (2002) Sub-lethal effects in honeybees: their significance and use in pesticide risk assessment. 8th International Symposium Hazards of Pesticides to Bees, Bologna, September 4–6Google Scholar
  45. Vaughan A (1986) Cypermethrin: honey bee acute contact and oral LD50. U.S. Environmental Protection Agency, Environmental Effects Branch, February 28Google Scholar
  46. Villa, S, Vighi, M, Finizio, A, Bolchi Serini, G 2000Risk assessment for honeybees from pesticide-exposed pollenEcotoxicology9287297Google Scholar
  47. Wahl, O, Ulm, K 1983Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnicaOecologia59106128Google Scholar
  48. Waller, GD, Erikson, BJ, Harvey, J, Martin, JH 1984Effects of dimethoate on honeybees (Hymenoptera: apidae) when applied to flowering lemonsJ Econ Entomol777074Google Scholar
  49. Weick, J, Thorn, RS 2002Effects of acute sublethal exposure to coumaphos or diazinon on acquisition and discrimination of odor stimuli in the honey bee (Hymenoptera: Apidae)J Econ Entomol9227236Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. Decourtye
    • 1
  • J. Devillers
    • 2
  • E. Genecque
    • 3
  • K. Le Menach
    • 4
  • H. Budzinski
    • 4
  • S. Cluzeau
    • 1
  • M. H. Pham-Delègue
    • 3
  1. 1.Association de Coordination Technique Agricole, Maison des AgriculteursLa Tour de SalvagnyFrance
  2. 2.CTISRillieux La PapeFrance
  3. 3.Laboratoire de Neurobiologie Comparée des Invertébrés, INRABures-sur-YvetteFrance
  4. 4.Laboratoire de Physico-Toxico-Chimie des Systèmes Naturels, UMR 5472 CNRSUniversité de Bordeaux ITalence CedexFrance

Personalised recommendations