Skip to main content

Advertisement

Log in

Causal association of genetically predicted urinary sodium–potassium ratio and upper urinary calculi

  • Research
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The causality between the urinary sodium–potassium ratio and upper urinary calculi has not been clarified and easily affected by confounders. We performed two-sample and multivariable Mendelian randomization (MR) analysis to evaluate the potential causal role of the urinary sodium–potassium ratio in upper urinary calculi. Data of the urinary sodium–potassium ratio (N = 326,938), upper urinary calculi (N = 337,199), and confounding factors including BMI (N = 336,107), ever-smoke (N = 461,066), hypertension (N = 218,754), diabetes (N = 218,792), and alcohol intake frequency (N = 462,346) were obtained from the IEU OpenGWAS Project database. The inverse-variance weighted (IVW), weighted median, and MR-Egger methods were used to estimate MR effects. The MR-Egger intercept test, Cochran's Q test, MR-PRESSO, leave-one-out method, and funnel plot were used for sensitivity analysis. A causal relationship was found between the urinary sodium–potassium ratio and upper urinary calculi (OR = 1.008, 95% CI = 1.002–1.013, P = 0.011). FinnGen data supported this conclusion (OR = 2.864, 95% CI = 1.235–6.641, P = 0.014). The multivariable Mendelian randomization analysis result showed that after adjusting for the effects of five confounders, the urinary sodium–potassium ratio was still positively correlated with upper urinary calculi (OR = 1.005, 95% CI = 1.001–1.009, P = 0.012). This study demonstrated a positive causal association between the urinary sodium–potassium ratio and upper urinary calculi using MR analysis. Timely identification of changes in urine composition and dietary regulation of sodium and potassium intake could greatly reduce the incidence of future urinary calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data could be found in the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/).

References

  1. Zhu C, Wang DQ, Zi H, Huang Q, Gu JM, Li LY et al (2021) Epidemiological trends of urinary tract infections, urolithiasis and benign prostatic hyperplasia in 203 countries and territories from 1990 to 2019. Mil Med Res 8(1):64

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hájková V, Švecová T, Uvíra M, Vojtíšek T, Handlos P (2021) Various fatal complications of urolithiasis. Forensic Sci Med Pat 17(3):513–516

    Article  Google Scholar 

  3. Willey J, Gardener H, Cespedes S, Cheung YK, Sacco RL, Elkind M (2017) Dietary sodium to potassium ratio and risk of stroke in a multiethnic urban population: the Northern Manhattan study. Stroke 48(11):2979–2983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ (1997) Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 126(7):497–504

    Article  CAS  PubMed  Google Scholar 

  5. Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. New Engl J Med 328(12):833–838

    Article  CAS  PubMed  Google Scholar 

  6. Iwahori T, Miura K, Ueshima H (2017) Time to consider use of the sodium-to-potassium ratio for practical sodium reduction and potassium increase. Nutrients 9(7):700

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davies NM, Holmes MV, Davey SG (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ-Brit Med J 362:k601

    Article  Google Scholar 

  8. Davey SG, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):R89–R98

    Article  Google Scholar 

  9. Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA-J Am Med Assoc 318(19):1925–1926

    Article  Google Scholar 

  10. Bowden J, Holmes MV (2019) Meta-analysis and Mendelian randomization: a review. Res Synth Methods 10(4):486–496

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sanderson E (2021) Multivariable Mendelian randomization and mediation. CSH Perspect Med 11(2):a038984

    CAS  Google Scholar 

  12. Burgess S, Thompson SG (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 181(4):251–260

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zanetti D, Bergman H, Burgess S, Assimes TL, Bhalla V, Ingelsson E (2020) Urinary albumin, sodium, and potassium and cardiovascular outcomes in the UK biobank: observational and Mendelian randomization analyses. Hypertension 75(3):714–722

    Article  CAS  PubMed  Google Scholar 

  14. Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764

    Article  PubMed  Google Scholar 

  15. Bowden J, Davey SG, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bowden J, Davey SG, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525

    Article  PubMed  PubMed Central  Google Scholar 

  17. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG (2017) Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28(1):30–42

    Article  PubMed  Google Scholar 

  18. Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ye Z, Zeng G, Yang H, Li J, Tang K, Wang G et al (2020) The status and characteristics of urinary stone composition in China. BJU Int 125(6):801–809

    Article  CAS  PubMed  Google Scholar 

  21. Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F, Maggiore U et al (2002) Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. New Engl J Med 346(2):77–84

    Article  CAS  PubMed  Google Scholar 

  22. Chewcharat A, Thongprayoon C, Vaughan LE, Mehta RA, Schulte PJ, O’Connor HM et al (2022) Dietary risk factors for incident and recurrent symptomatic kidney stones. Mayo Clin Proc 97(8):1437–1448

    Article  PubMed  Google Scholar 

  23. Clark AJ, Mossholder S (1986) Sodium and potassium intake measurements: dietary methodology problems. Am J Clin Nutr 43(3):470–476

    Article  CAS  PubMed  Google Scholar 

  24. Ennis JL, Asplin JR (2016) The role of the 24-h urine collection in the management of nephrolithiasis. Int J Surg 36(5):633–637

    Article  PubMed  Google Scholar 

  25. Yatabe MS, Iwahori T, Watanabe A, Takano K, Sanada H, Watanabe T et al (2017) Urinary sodium-to-potassium ratio tracks the changes in salt intake during an experimental feeding study using standardized low-salt and high-salt meals among healthy Japanese volunteers. Nutrients 9(9):951

    Article  PubMed  PubMed Central  Google Scholar 

  26. Massey LK, Whiting SJ (1995) Dietary salt, urinary calcium, and kidney stone risk. Nutr Rev 53(5):131–139

    Article  CAS  PubMed  Google Scholar 

  27. Moe OW, Preisig PA (2005) Hypothesizing on the evolutionary origins of salt-induced hypercalciuria. Curr Opin Nephrol Hy 14(4):368–372

    Article  CAS  Google Scholar 

  28. Ferraro PM, Mandel EI, Curhan GC, Gambaro G, Taylor EN (2016) Dietary protein and potassium, diet-dependent net acid load, and risk of incident kidney stones. Clin J Am Soc Nephrol 11(10):1834–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cappuccio FP, Strazzullo P, Mancini M (1990) Kidney stones and hypertension: population based study of an independent clinical association. BMJ-Brit Med J 300(6734):1234–1236

    Article  CAS  Google Scholar 

  30. Cappuccio FP, Siani A, Barba G, Mellone MC, Russo L, Farinaro E et al (1999) A prospective study of hypertension and the incidence of kidney stones in men. J Hypertens 17(7):1017–1022

    Article  CAS  PubMed  Google Scholar 

  31. Borghi L, Meschi T, Guerra A, Briganti A, Schianchi T, Allegri F et al (1999) Essential arterial hypertension and stone disease. Kidney Int 55(6):2397–2406

    Article  CAS  PubMed  Google Scholar 

  32. Young EW, Morris CD, McCarron DA (1992) Urinary calcium excretion in essential hypertension. J Lab Clin Med 120(4):624–632

    CAS  PubMed  Google Scholar 

  33. Semins MJ, Shore AD, Makary MA, Magnuson T, Johns R, Matlaga BR (2010) The association of increasing body mass index and kidney stone disease. J Urology 183(2):571–575

    Article  Google Scholar 

  34. Spatola L, Ferraro PM, Gambaro G, Badalamenti S, Dauriz M (2018) Metabolic syndrome and uric acid nephrolithiasis: insulin resistance in focus. Metabolism 83:225–233

    Article  CAS  PubMed  Google Scholar 

  35. Daudon M, Jungers P (2007) Diabetes and nephrolithiasis. Curr Diabetes Rep 7(6):443–448

    Article  Google Scholar 

  36. Lemann JJ, Lennon EJ, Piering WR, Prien EJ, Ricanati ES (1970) Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man. J Lab Clin Med 75(4):578–585

    CAS  PubMed  Google Scholar 

  37. Lemann JJ, Piering WF, Lennon EJ (1969) Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation. New Engl J Med 280(5):232–237

    Article  CAS  PubMed  Google Scholar 

  38. Taylor EN, Curhan GC (2006) Body size and 24-hour urine composition. Am J Kidney Dis 48(6):905–915

    Article  CAS  PubMed  Google Scholar 

  39. Chen C, Lee J, Jhan J, Lee Y, Geng J, Chen S et al (2021) Secondhand smoke increases the risk of developing kidney stone disease. Sci Rep-UK 11(1):17694

    Article  CAS  Google Scholar 

  40. Mooser V, Burnier M, Nussberger J, Juillerat L, Waeber B, Brunner HR (1989) Effects of smoking and physical exercise on platelet free cytosolic calcium in healthy normotensive volunteers. J Hypertens 7(3):211–216

    Article  CAS  PubMed  Google Scholar 

  41. Sulaiman SK, Enakshee J, Traxer O, Somani BK (2020) Which type of water is recommended for patients with stone disease (hard or soft water, tap or bottled water): evidence from a systematic review over the last 3 decades. Curr Urol Rep 21(1):6

    Article  PubMed  Google Scholar 

  42. Littlejohns TJ, Neal NL, Bradbury KE, Heers H, Allen NE, Turney BW (2020) Fluid intake and dietary factors and the risk of incident kidney stones in UK biobank: a population-based prospective cohort study. Eur Urol Focus 6(4):752–761

    Article  PubMed  Google Scholar 

  43. Eisenhofer G, Johnson RH (1982) Effect of ethanol ingestion on plasma vasopressin and water balance in humans. Am J Physiol 242(5):R522–R527

    CAS  PubMed  Google Scholar 

  44. Jee YH, Jung KJ, Park YB, Spiller W, Jee SH (2019) Causal effect of alcohol consumption on hyperuricemia using a Mendelian randomization design. Int J Rheum Dis 22(10):1912–1919

    Article  CAS  PubMed  Google Scholar 

  45. Kawamoto R, Kikuchi A, Akase T, Ninomiya D, Tokumoto Y, Kumagi T (2021) Alcohol consumption and serum uric acid are synergistically associated with renal dysfunction among community-dwelling persons. J Clin Lab Anal 35(6):e23812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zuccolo L, Holmes MV (2017) Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data. Int J Epidemiol 46(3):962–965

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YX and XL designed the whole article and conducted data analysis and article writing. SW and WW prepared the data and reviewed the manuscript. JW and QG reviewed and revised the article process and details. All authors (YX, XL, SW, WW, QG, and JW) participated in the critical revision of the manuscript.

Corresponding author

Correspondence to Jingqi Wang.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Y., Liu, X., Wang, S. et al. Causal association of genetically predicted urinary sodium–potassium ratio and upper urinary calculi. Urolithiasis 51, 63 (2023). https://doi.org/10.1007/s00240-023-01438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00240-023-01438-2

Keywords

Navigation