Skip to main content

Advertisement

Log in

Puerarin prevents calcium oxalate crystal-induced renal epithelial cell autophagy by activating the SIRT1-mediated signaling pathway

  • Original Article
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Calcium oxalate (CaOx) crystals can activate autophagy, causing damage to renal tubular epithelial cells (TECs). Puerarin has been shown to have protective and therapeutic effects against a variety of diseases by inhibiting autophagy activation. However, the protective effect of puerarin against CaOx crystals and the underlying molecular mechanisms are unclear. Cell Counting Kit-8 (CCK-8) assays were used to evaluate the effects of puerarin on cell viability. Intracellular reactive oxygen species (ROS) levels were measured by the cell-permeable fluorogenic probe 2,7-dichlorofluorescein diacetate (DCFH-DA). Immunofluorescence, immunohistochemistry, and western blotting were used to examine the expression of SIRT1, Beclin1, p62, and LC3, and explore the underlying molecular mechanisms in vivo and in vitro. Puerarin treatment significantly attenuated CaOx crystal-induced autophagy of TECs and CaOx cytotoxicity to TECs by altering SIRT1 expression in vitro and in vivo, whereas the SIRT1-specific inhibitor EX527 exerted contrasting effects. In addition, we found that the protective effect of puerarin was related to the SIRT1/AKT/p38 signaling pathway. The findings suggest that puerarin regulates CaOx crystal-induced autophagy by activating the SIRT1-mediated signaling pathway, and they suggest a series of potential therapeutic targets and strategies for treating nephrolithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y (2017) Epidemiology of stone disease across the world. World J Urol 35:1301–1320. https://doi.org/10.1007/s00345-017-2008-6

    Article  PubMed  Google Scholar 

  2. Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J, Khan SR (2016) Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol 195:1143–1151. https://doi.org/10.1016/j.juro.2015.11.048

    Article  CAS  PubMed  Google Scholar 

  3. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A (2011) Hyperoxaluria: a gut-kidney axis? Kidney Int 80:1146–1158. https://doi.org/10.1038/ki.2011.287

    Article  CAS  PubMed  Google Scholar 

  4. Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25:831–841. https://doi.org/10.1007/s00467-009-1116-y

    Article  PubMed  Google Scholar 

  5. Sun XY, Ouyang JM, Yu K (2017) Shape-dependent cellular toxicity on renal epithelial cells and stone risk of calcium oxalate dihydrate crystals. Sci Rep 7:7250. https://doi.org/10.1038/s41598-017-07598-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mulay SR, Evan A, Anders HJ (2014) Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol Dial Transplant 29:507–514. https://doi.org/10.1093/ndt/gft248

    Article  CAS  PubMed  Google Scholar 

  7. Zhou T, Wang Z, Guo M, Zhang K, Geng L, Mao A, Yang Y, Yu F (2020) Puerarin induces mouse mesenteric vasodilation and ameliorates hypertension involving endothelial TRPV4 channels. Food Funct 11:10137–10148. https://doi.org/10.1039/d0fo02356f

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Yao J, Ju L, Wen X, Shu L (2020) Puerarin ameliorates hyperglycemia in HFD diabetic mice by promoting β-cell neogenesis via GLP-1R signaling activation. Phytomedicine 70:153222. https://doi.org/10.1016/j.phymed.2020.153222

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, Cao XL, Liu GQ, Zhou T, Yang XL, Ma BX (2019) The in silico and in vivo evaluation of puerarin against Alzheimer’s disease. Food Funct 10:799–813. https://doi.org/10.1039/c8fo01696h

    Article  CAS  PubMed  Google Scholar 

  10. Zhou YX, Zhang H, Peng C (2014) Puerarin: a review of pharmacological effects. Phytother Res 28:961–975. https://doi.org/10.1002/ptr.5083

    Article  CAS  PubMed  Google Scholar 

  11. Han Y, Wang H, Wang Y, Dong P, Jia J, Yang S (2021) Puerarin protects cardiomyocytes from ischemia-reperfusion injury by upregulating LncRNA ANRIL and inhibiting autophagy. Cell Tissue Res 385:739–751. https://doi.org/10.1007/s00441-021-03463-2

    Article  CAS  PubMed  Google Scholar 

  12. Zhong Y, Lee K, He JC (2018) SIRT1 is a potential drug target for treatment of diabetic kidney disease. Front Endocrinol 9:624. https://doi.org/10.3389/fendo.2018.00624

    Article  Google Scholar 

  13. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu MY, Lu JH (2019) Autophagy and macrophage functions: inflammatory response and phagocytosis. Cells. https://doi.org/10.3390/cells9010070

    Article  PubMed  PubMed Central  Google Scholar 

  15. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662. https://doi.org/10.1056/NEJMra1205406

    Article  CAS  PubMed  Google Scholar 

  16. Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, Zhao Z, Deng T, Zeng T, Cai C, Li S, Zhong W, Wu W, Zeng G (2018) Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 16:414–425. https://doi.org/10.1016/j.redox.2018.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118. https://doi.org/10.1038/nature03354

    Article  CAS  PubMed  Google Scholar 

  18. Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2:105–117. https://doi.org/10.1016/j.cmet.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  19. Salminen A, Kaarniranta K (2009) SIRT1: regulation of longevity via autophagy. Cell Signal 21:1356–1360. https://doi.org/10.1016/j.cellsig.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  20. Hou J, Ding J, Li L, Peng Y, Gao X, Guo Z (2019) Association of sirtuin 1 gene polymorphisms with nephrolithiasis in Eastern Chinese population. Ren Fail 41:34–41. https://doi.org/10.1080/0886022x.2019.1568258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye T, Yang X, Liu H, Lv P, Lu H, Jiang K, Peng E, Ye Z, Chen Z, Tang K (2021) Theaflavin protects against oxalate calcium-induced kidney oxidative stress injury via upregulation of SIRT1. Int J Biol Sci 17:1050–1060. https://doi.org/10.7150/ijbs.57160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McMartin K (2009) Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol 47:859–869. https://doi.org/10.3109/15563650903344793

    Article  CAS  Google Scholar 

  23. Yamaguchi S, Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS (2005) Study of a rat model for calcium oxalate crystal formation without severe renal damage in selected conditions. Int J Urol 12:290–298. https://doi.org/10.1111/j.1442-2042.2005.01038.x

    Article  CAS  PubMed  Google Scholar 

  24. Tan C, Wang A, Liu C, Li Y, Shi Y, Zhou MS (2017) Puerarin improves vascular insulin resistance and cardiovascular remodeling in salt-sensitive hypertension. Am J Chin Med 45:1169–1184. https://doi.org/10.1142/s0192415x17500641

    Article  CAS  PubMed  Google Scholar 

  25. Han Y, Wang H, Wang Y, Dong P, Jia J, Yang S (2021) Puerarin protects cardiomyocytes from ischemia-reperfusion injury by upregulating LncRNA ANRIL and inhibiting autophagy. Cell Tissue Res. https://doi.org/10.1007/s00441-021-03463-2

    Article  PubMed  PubMed Central  Google Scholar 

  26. Du C, Zhang T, Xiao X, Shi Y, Duan H, Ren Y (2017) Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Biochem J 474:2733–2747. https://doi.org/10.1042/bcj20170272

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura S, Shigeyama S, Minami S, Shima T, Akayama S, Matsuda T, Esposito A, Napolitano G, Kuma A, Namba-Hamano T, Nakamura J, Yamamoto K, Sasai M, Tokumura A, Miyamoto M, Oe Y, Fujita T, Terawaki S, Takahashi A, Hamasaki M, Yamamoto M, Okada Y, Komatsu M, Nagai T, Takabatake Y, Xu H, Isaka Y, Ballabio A, Yoshimori T (2020) LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nat Cell Biol 22:1252–1263. https://doi.org/10.1038/s41556-020-00583-9

    Article  CAS  PubMed  Google Scholar 

  28. Zhang G, Wang Y, Tang G, Ma Y (2019) Puerarin inhibits the osteoclastogenesis by inhibiting RANKL-dependent and -independent autophagic responses. BMC Complement Altern Med 19:269. https://doi.org/10.1186/s12906-019-2691-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu X, Jiang R, Chen M, Dong M, Liu Q, Cheng H, Zhou K, Chen L, Li M, Jiang C (2019) Puerarin decreases collagen secretion in AngII-induced atrial fibroblasts through inhibiting autophagy via the JNK-Akt-mTOR signaling pathway. J Cardiovasc Pharmacol 73:373–382. https://doi.org/10.1097/fjc.0000000000000672

    Article  CAS  PubMed  Google Scholar 

  30. Liu Q, Wang C, Meng Q, Wu J, Sun H, Sun P, Ma X, Huo X, Liu K (2021) Puerarin sensitized K562/ADR cells by inhibiting NF-κB pathway and inducing autophagy. Phytother Res 35:1658–1668. https://doi.org/10.1002/ptr.6932

    Article  CAS  PubMed  Google Scholar 

  31. Yin L, Chen X, Li N, Jia W, Wang N, Hou B, Yang H, Zhang L, Qiang G, Yang X, Du G (2021) Puerarin ameliorates skeletal muscle wasting and fiber type transformation in STZ-induced type 1 diabetic rats. Biomed Pharmacother 133:110977. https://doi.org/10.1016/j.biopha.2020.110977

    Article  CAS  PubMed  Google Scholar 

  32. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148. https://doi.org/10.1016/s0092-8674(01)00524-4

    Article  CAS  PubMed  Google Scholar 

  33. Packer M (2020) Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. J Am Soc Nephrol 31:907–919. https://doi.org/10.1681/asn.2020010010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Packer M (2020) Role of deranged energy deprivation signaling in the pathogenesis of cardiac and renal disease in states of perceived nutrient overabundance. Circulation 141:2095–2105. https://doi.org/10.1161/circulationaha.119.045561

    Article  CAS  PubMed  Google Scholar 

  35. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C (2013) Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci USA 110:E2772-2781. https://doi.org/10.1073/pnas.1303628110

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sun Y, Dai S, Tao J, Li Y, He Z, Liu Q, Zhao J, Deng Y, Kang J, Zhang X, Yang S, Liu Y (2020) Taurine suppresses ROS-dependent autophagy via activating Akt/mTOR signaling pathway in calcium oxalate crystals-induced renal tubular epithelial cell injury. Aging 12:17353–17366. https://doi.org/10.18632/aging.103730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Wang R (2017) Blocking SIRT1 inhibits cell proliferation and promotes aging through the PI3K/AKT pathway. Life Sci 190:84–90. https://doi.org/10.1016/j.lfs.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  38. Zhang XS, Lu Y, Li W, Tao T, Peng L, Wang WH, Gao S, Liu C, Zhuang Z, Xia DY, Hang CH, Li W (2021) Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 178:1114–1132. https://doi.org/10.1111/bph.15346

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NFSC, No. 81370803, 81600543), the Natural Science Foundation of Chongqing (Postdoctoral Fund): cstc2021jcyj-bsh0024, the China Postdoctoral Science Foundation (2018M631049), the Heilongjiang Postdoctoral Fund (LBH-Z18122).

Author information

Authors and Affiliations

Authors

Contributions

G-HJ and Y-DL contributed equally to this work and should be considered co-first authors. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Shi-Liang Yu or Rui-Hua An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, GH., Liu, YD., Liu, JN. et al. Puerarin prevents calcium oxalate crystal-induced renal epithelial cell autophagy by activating the SIRT1-mediated signaling pathway. Urolithiasis 50, 545–556 (2022). https://doi.org/10.1007/s00240-022-01347-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-022-01347-w

Keywords

Navigation