Skip to main content
Log in

Multimodal imaging reveals a unique autofluorescence signature of Randall’s plaque

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Kidney stones frequently develop as an overgrowth on Randall’s plaque (RP) which is formed in the papillary interstitium. The organic composition of RP is distinct from stone matrix in that RP contains fibrillar collagen; RP in tissue has also been shown to have two proteins that are also found in stones, but otherwise the molecular constituents of RP are unstudied. We hypothesized that RP contains unique organic molecules that can be differentiated from the stone overgrowth by fluorescence. To test this, we used micro-CT-guided polishing to expose the interior of kidney stones for multimodal imaging with multiphoton, confocal and infrared microscopy. We detected a blue autofluorescence signature unique to RP, the specificity of which was also confirmed in papillary tissue from patients with stone disease. High-resolution mineral mapping of the stone also showed a transition from the apatite within RP to the calcium oxalate in the overgrowth, demonstrating the molecular and spatial transition from the tissue to the urine. This work provides a systematic and practical approach to uncover specific fluorescence signatures which correlate with mineral type, verifies previous observations regarding mineral overgrowth onto RP and identifies a novel autofluorescence signature of RP demonstrating RP’s unique molecular composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not relevant.

Code availability

Not relevant.

References

  1. Scales CD Jr, Smith AC, Hanley JM, Saigal CS (2012) Prevalence of kidney stones in the United States. EurUrol 62:160–165

    Google Scholar 

  2. Williams JC Jr, McAteer JA (2013) Retention and growth of urinary stones—insights from imaging. J Nephrol 26:25–31

    Article  Google Scholar 

  3. Letavernier E, Vandermeersch S, Traxer O, Tligui M, Baud L, Ronco P, Haymann JP, Daudon M (2015) Demographics and characterization of 10,282 Randall plaque-related kidney stones: a new epidemic? Medicine (Baltimore) 94:e566

    Article  Google Scholar 

  4. Verrier C, Bazin D, Huguet L, Stéphan O, Gloter A, Verpont M-C, Frochot V, Haymann J-P, Brocheriou I, Traxer O, Daudon M, Letavernier E (2016) Topography, composition and structure of incipient Randall’s plaque at the nanoscale level. J Urol 196:1566–1574

    Article  Google Scholar 

  5. Williams JC Jr, Lingeman JE, Coe FL, Worcester EM, Evan AP (2015) Micro-CT imaging of Randall’s plaques. Urolithiasis 43:13–17

    Article  Google Scholar 

  6. CifuentesDelatte L, MiñónCifuentes J, Medina JA (1987) New studies on papillary calculi. J Urol 137:1024–1029

    Article  CAS  Google Scholar 

  7. Murphy DB, Davidson MW (2013) Fundamentals of light microscopy and electronic imaging. In: Editor (ed)^(eds) Book Fundamentals of light microscopy and electronic imaging. Wiley-Blackwell, City, pp. xiii, 538 p.

  8. Anderson J, Dellomo J, Sommer A, Evan A, Bledsoe S (2005) A concerted protocol for the analysis of mineral deposits in biopsied tissue using infrared microanalysis. Urol Res 33:213–219

    Article  CAS  Google Scholar 

  9. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  CAS  Google Scholar 

  10. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7:654–669

    Article  CAS  Google Scholar 

  11. Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA (2002) Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 82:493–508

    Article  CAS  Google Scholar 

  12. Pramanik R, Asplin JR, Jackson ME, Williams JC Jr (2008) Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 36:251–258

    Article  CAS  Google Scholar 

  13. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616

    Article  CAS  Google Scholar 

  14. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  15. Peng H, Bria A, Zhou Z, Iannello G, Long F (2014) Extensible visualization and analysis for multidimensional images using Vaa3D. Nat Protoc 9:193–208

    Article  CAS  Google Scholar 

  16. Daudon M, Williams JC Jr. (2020) Characteristics of Human Kidney Stones. In: Coe F, Worcester EM, Lingeman JE, Evan AP (eds) Kidney Stones. Jaypee Medical Publishers, pp. 77–97

  17. Gulley-Stahl HJ, Bledsoe SB, Evan AP, Sommer AJ (2010) The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis. ApplSpectrosc 64:15–22

    Article  CAS  Google Scholar 

  18. Williams JC Jr, Worcester E, Lingeman JE (2017) What can the microstructure of stones tell us? Urolithiasis 45:19–25

    Article  Google Scholar 

  19. Khan SR, Rodriguez DE, Gower LB, Monga M (2012) Association of Randall plaque with collagen fibers and membrane vesicles. J Urol 187:1094–1100

    Article  CAS  Google Scholar 

  20. Sethmann I, Wendt-Nordahl G, Knoll T, Enzmann F, Simon L, Kleebe HJ (2017) Microstructures of Randall’s plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms. Urolithiasis 45:235–248

    Article  CAS  Google Scholar 

  21. Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec 290:1315–1323

    Article  CAS  Google Scholar 

  22. CifuentesDelatte L (1977) Etudes sur la structure des calculs à l’aide des coupes minces minéralogiques. J UrolNephrol (Paris) 83:592–596

    Google Scholar 

  23. Sivaguru M, Saw JJ, Williams JC Jr, Lieske JC, Krambeck AE, Romero MF, Chia N, Schwaderer AL, Alcalde RE, Bruce WJ, Wildman DE, Fried GA, Werth CJ, Reeder RJ, Yau PM, Sanford RA, Fouke BW (2018) Geobiology reveals how human kidney stones dissolve in vivo. Sci Rep 8:13731

    Article  Google Scholar 

  24. Khan SR, Finlayson B, Hackett RL (1983) Agar-embedded urinary stones: a technique useful for studying microscopic architecture. J Urol 130:992–995

    Article  CAS  Google Scholar 

  25. Amato SP, Pan F, Schwartz J, Ragan TM (2016) Whole brain imaging with serial two-photon tomography. Front Neuroanat 10:31

    Article  Google Scholar 

  26. Winfree S, Hato T, Day RN (2017) Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods 128:95–104

    Article  CAS  Google Scholar 

  27. Hato T, Winfree S, Day R, Sandoval RM, Molitoris BA, Yoder MC, Wiggins RC, Zheng Y, Dunn KW, Dagher PC (2017) Two-photon intravital fluorescence lifetime imaging of the kidney reveals cell-type specific metabolic signatures. J Am SocNephrol 28:2420–2430

    CAS  Google Scholar 

  28. Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM (2016) Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDIFTICR imaging mass spectrometry for protein analysis. Proteomics 16:1678–1689

    Article  CAS  Google Scholar 

  29. Lovett AC, Khan SR, Gower LB (2019) Development of a two-stage in vitro model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 1-biomimetic Randall’s plaque using decellularized porcine kidneys. Urolithiasis 47:321–334

    Article  Google Scholar 

  30. O'Kell AL, Lovett AC, Canales BK, Gower LB, Khan SR (2019) Development of a two-stage model system to investigate the mineralization mechanisms involved in idiopathic stone formation: stage 2 in vivo studies of stone growth on biomimetic Randall’s plaque. Urolithiasis 47:335–346

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sharon Bledsoe and Tony Gardner for assistance with data collection. This work was funded by the following grants from the National Institutes of Health: P01 DK056788; R01 DK124776, and S10 RR023710

Funding

NIH P01 DK056788; NIH R01 DK124776; NIH S10 RR023710.

Author information

Authors and Affiliations

Authors

Contributions

This is a multi-center study, and all authors were involved in data collection and manuscript review.

Corresponding author

Correspondence to James C. Williams Jr..

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Ethical approval

Local Internal Review Board approved stone collection from patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winfree, S., Weiler, C., Bledsoe, S.B. et al. Multimodal imaging reveals a unique autofluorescence signature of Randall’s plaque. Urolithiasis 49, 123–135 (2021). https://doi.org/10.1007/s00240-020-01216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-020-01216-4

Keywords

Navigation