Skip to main content
Log in

The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

This paper reports on the investigation of experimental conditions relevant for spontaneous precipitation of significant amount of pure calcium oxalate dihydrate (COD). For this purpose, the hydrodynamic and thermodynamic parameters, such as mode of agitation, temperature, supersaturation and concentration of additives (citrate ions), have been studied. The results show that in the model systems, without the citrate addition and applied mechanical stirring, calcium oxalate monohydrate (COM) was observed as dominant modification after 20 min of aging, while the magnetic stirring resulted in a formation of a mixture of COM and calcium oxalate trihydrate (COT), regardless of the temperature applied. In the mechanically stirred systems, the addition of citrate ions in the range of concentrations, 0.001 mol dm−3 < c i (Na3C6H5O7) < 0.012 mol dm−3, caused the formation of COM and COD mixture at all temperatures. At the same conditions and in the magnetically stirred systems formation of COD, in a mixture with COT or COM, has been observed. The highest COD content in the mechanically stirred system was obtained at 45 °C and c i (Na3C6H5O7) = 0.001 mol dm−3 (w = 89.5%), while in the magnetically stirred system almost pure COD was obtained at 37 °C and c i (Na3C6H5O7) = 0.008 mol dm−3 (w = 96.5%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Occasionally, COD appeared as a typical weddellite, four-bladed dendritic form.

References

  1. Hess B, Ryall RL, Kavanagh JP, Khan SR, Kok DJ, Rodgers AL, Tiselius HG (2001) Methods for measuring crystallization in urolithiasis research: why, how and when? Eur Urol 40(2):220–230

    Article  PubMed  CAS  Google Scholar 

  2. Bramley AS, Hounslow MJ, Ryall RL (1997) Aggregation during precipitation from solution. Kinetics for calcium oxalate monohydrate. Chem Eng Sci 52(5):747–757. doi:10.1016/S0009-2509(96)00447-2

    Article  CAS  Google Scholar 

  3. Pitt K, Mitchell GP, Ray A, Heywood BR, Hounslow MJ (2012) Micro-mechanical model of calcium oxalate monohydrate aggregation in supersaturated solutions: effect of crystal form and seed concentration. J Cryst Growth 361:176–188. doi:10.1016/j.jcrysgro.2012.09.020

    Article  CAS  Google Scholar 

  4. Conti C, Casati M, Colombo C, Realini M, Brambilla L, Zerbi G (2014) Phase transformation of calcium oxalate dihydrate-monohydrate: effects of relative humidity and new spectroscopic data. Spectrochim Acta Part A 128:413–419. doi:10.1016/j.saa.2014.02.182

    Article  CAS  Google Scholar 

  5. Lj Brečević, Kralj D (1989) Factors influencing the distribution of hydrates in calcium oxalate precipitation. J Cryst Growth 97(2):460–468. doi:10.1016/0022-0248(89)90227-3

    Article  Google Scholar 

  6. Brown P, Ackermann D, Finlayson B (1989) Calcium oxalate dihydrate (weddellite) precipitation. J Cryst Growth 98(3):285–292. doi:10.1016/0022-0248(89)90143-7

    Article  CAS  Google Scholar 

  7. Škrtić D, Marković M, Komunjer LJ, Füredi-Milhofer H (1984) Precipitation of calcium oxalates from high ionic strength solutions: I. Kinetics of spontaneous precipitation of calcium oxalate trihydrate. J Cryst Growth 66(2):431–440. doi:10.1016/0022-0248(84)90227-6

    Article  Google Scholar 

  8. Farmanesh S, Ramamoorthy S, Chung J, Asplin JR, Karande P, Rimer JD (2014) Specificity of growth inhibitors and their cooperative effects in calcium oxalate monohydrate crystallization. J Am Chem Soc 136(1):367–376. doi:10.1021/ja410623q

    Article  PubMed  CAS  Google Scholar 

  9. Heijnen W, Jellinghaus W, Klee WE (1985) Calcium oxalate trihydrate in urinary calculi. Urol Res 13(6):281–283. doi:10.1007/BF00262657

    Article  PubMed  CAS  Google Scholar 

  10. Schaefer A, Bausch W (1979) Bedeutung der Spurenelementverteilung in Calciumoxalat-Harnsteinen. Fortschr Urol Nephrol 14:236–241

    Article  Google Scholar 

  11. Pak CY (1991) Citrate and renal calculi: new insights and future directions. Am J Kidney Dis 17(4):420–425. doi:10.1016/S0272-6386(12)80635-4

    Article  PubMed  CAS  Google Scholar 

  12. Hallson PC, Rose GA, Sulaiman S (1983) Raising urinary citrate lowers calcium oxalate and calcium phosphate crystal formation in whole urine. Urol Int 38(3):179–181. doi:10.1159/000280885

    Article  PubMed  CAS  Google Scholar 

  13. Ryall RL, Harnett RM, Marshall VR (1981) The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta 112(3):349–356. doi:10.1016/0009-8981(81)90458-7

    Article  PubMed  CAS  Google Scholar 

  14. Kok DJ, Papapoulos SE, Bijvoet OL (1986) Excessive crystal agglomeration with low citrate excretion in recurrent stone-formers. Lancet 1:1056–1058. doi:10.1016/S0140-6736(86)91329-2

    Article  PubMed  CAS  Google Scholar 

  15. Mattle D, Hess B (2005) Preventive treatment of nephrolithiasis with alkali citrate—a critical review. Urol Res 33(2):73–79. doi:10.1007/s00240-005-0464-8

    Article  PubMed  CAS  Google Scholar 

  16. Kok DJ, Papapoulos SE, Bijvoet OL (1990) Crystal agglomeration is a major element in calcium oxalate urinary stone formation. Kidney Int 37(1):51–56

    Article  PubMed  CAS  Google Scholar 

  17. Škrtić D, Füredi-Milhofer H, Marković M (1987) Precipitation of calcium oxalates from high ionic strength solutions: V. The influence of precipitation conditions and some additives on the nucleating phase. J Cryst Growth 80:113–120. doi:10.1016/0022-0248(87)90530-6

    Article  Google Scholar 

  18. Lj Brečević, Kralj D (1986) The influence of some amino acids on calcium oxalate dihydrate transformation. J Cryst Growth 79:178–184. doi:10.1016/0022-0248(86)90433-1

    Article  Google Scholar 

  19. Ackermann D, Brown P, Finlayson B (1988) COD production. Urol Res 16:219

    Google Scholar 

  20. Doherty WOS, Crees OL, Senogles E (1994) The preparation of calcium oxalate dihydrate crystals. Cryst Res Technol 29:517–524. doi:10.1002/crat.2170290412

    Article  CAS  Google Scholar 

  21. Kaloustian J, El-Moselhy TF, Portugal H (2003) Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: the use of simultaneous thermal analysis in urinary calculi. Clin Chim Acta 334:117–129

    Article  PubMed  CAS  Google Scholar 

  22. Echigo T, Kimata M, Kyono A, Shmizu M, Hatta T (2005) Re-investigation of the crystal structure of whewellite [Ca(C2O4)·H2O] and the dehydration mechanism of caoxite [Ca(C2O4)·3H2O]. Mineral Mag 69:77–88. doi:10.1180/0026461056910235

    Article  CAS  Google Scholar 

  23. Babić-Ivančić V, Füredi-Milhofer H, Purgarić B, Brničević N, Despotović Z (1985) Precipitation of calcium oxalates from high ionic strength solutions III. The influence of reactant concentrations on the properties of the precipitates. J Cryst Growth 71:655–663. doi:10.1016/0022-0248(85)90374-4

    Article  Google Scholar 

  24. Maurice-Estepa L, Levillain P, Lacour B, Daudon M (2000) Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta 298:1–11

    Article  PubMed  CAS  Google Scholar 

  25. Ouyang JM, Deng SP, Zhou N, Tieke B (2005) Effect of tartrates with various counterions on the precipitation of calcium oxalate in vesicle solutions. Colloids Surf A256:21–27. doi:10.1016/j.colsurfa.2004.09.035

    Article  CAS  Google Scholar 

  26. Kok DJ, Papapoulos SE, Blomen LJ, Bijvoet OL (1988) Modulation of calcium oxalate monohydrate crystallization kinetics in vitro. Kidney Int 34(3):346–350

    Article  PubMed  CAS  Google Scholar 

  27. Ouyang JM (2006) Effect of temperature on growth and aggregation of calcium oxalate in presence of various carboxylic acids in silica gel systems. Mater Sci Eng C 26:679–682. doi:10.1016/j.msec.2005.06.060

    Article  CAS  Google Scholar 

  28. Füredi-Milhofer H, Babić-Ivančić V, Lj Brečević, Filipović-Vinceković N, Kralj D, Lj Komunjer, Marković M, Škrtić D (1990) Factors influencing nucleation from solutions supersaturated to different crystal hydrates. Colloids Surf 48:219–230. doi:10.1016/0166-6622(90)80230-2

    Article  Google Scholar 

  29. Thongboonkerd V, Semangoen T, Chutipongtanate S (2006) Factors determining types and morphologies of calcium oxalate crystals: molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta 367:120–131. doi:10.1016/j.cca.2005.11.033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Chemistry, University of Osijek, Croatia and Laboratory for Precipitation Processes, Ruđer Bošković Institute, Zagreb, Croatia. The authors thank Dr. B. Njegic Dzakula for help with calculations of solution composition and Dr. J. Kontrec for PSD analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Berislav Marković or Damir Kralj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šter, A., Šafranko, S., Bilić, K. et al. The effect of hydrodynamic and thermodynamic factors and the addition of citric acid on the precipitation of calcium oxalate dihydrate. Urolithiasis 46, 243–256 (2018). https://doi.org/10.1007/s00240-017-0991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-017-0991-0

Keywords

Navigation