Advertisement

Urolithiasis

, Volume 46, Issue 2, pp 157–166 | Cite as

Protective effect of dietary polyphenol caffeic acid on ethylene glycol-induced kidney stones in rats

  • Fauzia Yasir
  • Atia-tul- Wahab
  • M. Iqbal Choudhary
Original Paper

Abstract

Dietary polyphenol caffeic acid (1) has been reported for various pharmacological activities. The aim of the current study was to investigate the effect of caffeic acid (1) on ethylene glycol-induced renal stones in rats. For the study, male Wistar rats were divided into seven groups; normal, pathological, and standard drug controls, and preventive and curative groups. Normal control group received drinking water for 8 weeks. Pathological, standard drug, preventive, and curative groups received 0.75% ethylene glycol in drinking water for the induction of calcium oxalate stone formation, along with the regular diet. Standard drug group received Urocit-K by gavage from day 1, while preventive and curative groups received caffeic acid (1) by gavage at doses of 20 and 40 mg/kg on day 1 and day 14, respectively. At the end of the experiment, urine analysis and kidney histopathology were performed. Real-time PCR was performed to evaluate the renal expression of the most important genes involved in urolithiasis, i.e., osteopontin, Tamm-Horsfall, prothrombin fragment 1, and bikunin genes. The results indicated that in both the preventive and curative groups, treatment of rats with caffeic acid (1) significantly regulated the altered biochemical parameters, along with the remarkable reduction of calcium oxalate deposits in the kidneys, as compared to the pathological group. Treatment with compound 1 also resulted in down-regulation of the osteopontin gene, and up-regulation of the prothrombin fragment 1, Tamm-Horsfall, and bikunin genes. These results suggest that caffeic acid (1) can be further investigated for the prevention, and treatment of kidney stones.

Keywords

Caffeic acid Kidney stone Urolithiasis Calcium oxalate Osteopontin 

Notes

Acknowledgements

MIC and AW acknowledge the enabling role of the Pakistan Academy of Sciences (PAS), Pakistan, through a financial support under, a research Grant Project 5-9/PAS/2172 entitled, “Studies on natural inhibitors of kidney stone formation.”

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures in this study have been approved by the institutional ethics committee and were performed in accordance with the standard ethical guidelines for the care and use of animals.

References

  1. 1.
    Amin B, Feriz HM, Hariri AT, Meybodi NT, Hosseinzadeh H (2015) Protective effects of the aqueous extract of Crocus sativus against ethylene glycol induced nephrolithiasis in rats. EXCLI J 14:411–422PubMedPubMedCentralGoogle Scholar
  2. 2.
    Sowers MR, Jannausch M, Wood C, Pope SK, Lachance LL, Peterson B (1998) Prevalence of renal stones in a population-based study with dietary calcium, oxalate, and medication exposures. Am J Epidemiol 147(10):914–920CrossRefPubMedGoogle Scholar
  3. 3.
    Hussain M, Rizvi SAH, Askari H, Sultan G, Lal M, Ali B, Naqvi SA (2009) Management of stone disease: 17 years experience of a stone clinic in a developing country. J Pak Med Assoc 59:843–846PubMedGoogle Scholar
  4. 4.
    Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344CrossRefPubMedGoogle Scholar
  5. 5.
    Curhan GC (2007) Epidemiology of stone disease. Urol Clin North Am 34(3):287–293CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Deepika A, Minu S, Surinder KS (2013) The role of natural antioxidants as potential therapeutic agent in nephrolithiasis. AJPCR 6(3):48–53Google Scholar
  7. 7.
    Mi J, Duan J, Zhang J, Lu J, Wang H, Wang Z (2012) Evaluation of antiurolithic effect and the possible mechanisms of Desmodium styracifolium and Pyrrosiae petiolosa in rats. Uro Res 40:151–161CrossRefGoogle Scholar
  8. 8.
    Atmani F, Khan SR (2000) Effects of an extract from Herniaria hirsuta on calcium oxalate crystallization in vitro. BJU Int 85:621–625CrossRefPubMedGoogle Scholar
  9. 9.
    Butterweck V, Khan SR (2009) Herbal medicines in the management of urolithiasis: alternative or complementary? Planta Med 75(10):1095–1103CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Byahatti VV, Pai KV, D’Souza MG (2010) Effect of phenolic compounds from Bergenia ciliata (Haw.) Sternb. leaves on experimental kidney stones. Anc Sci. Life 30(1):14–17Google Scholar
  11. 11.
    Magnani C, Isaac VLB, Correaa MA, Salgado HRNl (2014) Caffeic acid: a review of its potential use in medications and cosmetics. Anal Methods 6:3203–3210CrossRefGoogle Scholar
  12. 12.
    Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747CrossRefPubMedGoogle Scholar
  13. 13.
    Phenol-Explorer Database on polyphenol content in food http://phenol-explorer.eu/contents/polyphenol/457
  14. 14.
    Berté KA, Beux MR, Spada PKWD, Savador M, Hoffmann-Ribani R (2011) Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J Agric Food Chem 59(10):5523–5527CrossRefPubMedGoogle Scholar
  15. 15.
    Rodrigo R, Bosco C (2006) Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol 142(3–4):317–327CrossRefPubMedGoogle Scholar
  16. 16.
    Chhiber N, Kaur T, Singla S (2016) Rottlerin, a polyphenolic compound from the fruits of Mallotus phillipensis (Lam.) Müll. Arg., impedes oxalate/calcium oxalate induced pathways of oxidative stress in male wistar rats. Phytomedicine 23(10):989–997CrossRefPubMedGoogle Scholar
  17. 17.
    Devkar RA, Chaudhary S, Adepu S, Xavier SK, Chandrashekar KS, Setty MM (2016) Evaluation of antiurolithiatic and antioxidant potential of Lepidagathis prostrata: a pashanbhed plant. Pharm Biol 54(7):1237–1245PubMedGoogle Scholar
  18. 18.
    Pawar AT, Vyawahare NS (2017) Protective effect of ethyl acetate fraction of Biophytum sensitivum extract against sodium oxalate-induced urolithiasis in rats. J Tradit Complement Med xxx. doi: 10.1016/j.jtcme.2016.12.012 Google Scholar
  19. 19.
    Sikarwar I, Dey YN, Wanjari MM, Sharma A, Gaidhani SN, Jadhav AD (2017) Chenopodium album Linn. leaves prevent ethylene glycol-induced urolithiasis in rats. J Ethnopharmacol 195:275–282CrossRefPubMedGoogle Scholar
  20. 20.
    Pawar AT, Vyawahare NS (2015) Protective effect of standardized extract of Biophytum sensitivum against calcium oxalate urolithiasis in rats. Bull Fac Pharm Cairo Univ 53(2):161–172. doi: 10.1016/j.bfopcu.2015.10.002 CrossRefGoogle Scholar
  21. 21.
    Lee HJ, Jeong SJ, Park MN, Linnes M, Han HJ, Kim JH, Lieske JC, Kim SH (2012) Gallotannin suppresses calcium oxalate crystal binding and oxalate-induced oxidative stress in renal epithelial cells. Biol Pharm Bull 35(4):539–544CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tsujihata M, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A (2011) Why does atorvastatin inhibit renal crystal retention? Urol Res 39(5):379–383. doi: 10.1007/s00240-011-0370-1 CrossRefPubMedGoogle Scholar
  23. 23.
    Grases F, Prieto RM, Gomila I, Sanchis P, Costa-Bauzá A (2009) Phytotherapy and renal stones: the role of antioxidants. A pilot study in Wistar rats. Urol Res 37(1):35–40. doi: 10.1007/s00240-008-0165-1 CrossRefPubMedGoogle Scholar
  24. 24.
    Liang Q, Li X, Zhou W, Su Y, He S, Cheng S, Lu J, Cao W, Yan Y, Pei X, Qi J, Xu G, Yue Z (2016) An Explanation of the underlying mechanisms for the in vitro and in vivo antiurolithic activity of Glechoma longituba. Oxid Med Cell Longev. 2016:1–11. doi: 10.1155/2016/3134919 CrossRefGoogle Scholar
  25. 25.
    Golshan A, Hayatdavoudi P, Hadjzadeh MAR et al (2017) Kidney stone formation and antioxidant effects of Cynodon dactylon decoction in male Wistar rats. Avicenna J Phytomed 7:180–190PubMedPubMedCentralGoogle Scholar
  26. 26.
    Grases F, Prieto RM, Fernandez-Cabot RA, Costa-Bauzá A, Tur F, Torres JJ (2015) Effects of polyphenols from grape seeds on renal lithiasis. Oxid Med Cell Longev 2015:1–6. doi: 10.1155/2015/813737 CrossRefGoogle Scholar
  27. 27.
    Saha S, Shrivastav PS, Verma RJ (2014) Antioxidative mechanism involved in the preventive efficacy of Bergenia ciliata rhizomes against experimental nephrolithiasis in rats. Pharm Biol 52(6):712–722CrossRefPubMedGoogle Scholar
  28. 28.
    Sailaja B, Bharathi K, Prasad KVSRG (2012) Role of Tridax procumbens Linn. in the management of experimentally induced urinary calculi and oxidative stress in rats. Indian J Nat Prod Resour 3(4):535–540Google Scholar
  29. 29.
    Ghodasara J, Pawar A, Deshmukh C, Kuchekar B (2010) Inhibitory effect of rutin and curcumin on experimentally-induced calcium oxalate urolithiasis in rats. Pharmacognosy Res 2(6):388–392CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Park HK, Jeong BC, Sung MK, Park MY, Choi EY, Kim BS, Kim HH, Kim JI (2008) Reduction of oxidative stress in cultured renal tubular cells and preventive effects on renal stone formation by the bioflavonoid quercetin. J Urol 179(4):1620–1626CrossRefPubMedGoogle Scholar
  31. 31.
    Janbaz KH, Saeed SA, Gilani AH (2004) Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine 11:424–430CrossRefPubMedGoogle Scholar
  32. 32.
    Dziedzic A, Kubina R, Kabała-Dzik A, Wojtyczka RD, Morawiec T, Bułdak RJ (2014) Caffeic acid reduces the viability and migration rate of oral carcinoma cells (SCC-25) exposed to low concentrations of ethanol. Int J Mol Sci 15:18725–18741CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2–3):e86–e96PubMedPubMedCentralGoogle Scholar
  34. 34.
    Atmani F, Slimani Y, Mimouni M, Hacht B (2003) Prophylaxis of calcium oxalate stones by Herniaria hirsuta on experimentally induced nephrolithiasis in rats. Br J Urol Int 92:137–140CrossRefGoogle Scholar
  35. 35.
    Touhami M, Laroubi A, Elhabazi K, Loubna F, Zrara I, Eljahiri Y, Oussama A, Grases F, Chait A (2007) Lemon juice has protective activity in a rat urolithiasis model. Bio Med Central Urolog 7:18–20Google Scholar
  36. 36.
    Tugcu V, Kemahli E, Ozbek E, Arinci YV, Uhri M, Erturkuner P, Metin G, Seckin I, Karaca C, Ipekoglu N, Altug T, Cekmen MB, Tasci AI (2008) Protective effect of a potent antioxidant, pomegranate juice, in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Endourol 22:2723–2731CrossRefPubMedGoogle Scholar
  37. 37.
    Orhan N, Onaran M, Şen I, Isik GI, Aslan M (2015) Preventive treatment of calcium oxalate crystal deposition with immortal flowers. J Ethnopharmacol 163:60–67CrossRefPubMedGoogle Scholar
  38. 38.
    Itoh Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K (2005) Preventive Effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol 173:271–275CrossRefPubMedGoogle Scholar
  39. 39.
    Rajendra Prasad N, Karthikeyan A, Karthikeyan S, Reddy BV (2011) Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 349(1–2):11–19CrossRefPubMedGoogle Scholar
  40. 40.
    Schladt L, Ivens I, Karbe E, Rühl-Fehlert C, Bomhard E (1998) Subacute oral toxicity of tetraethylene glycol and ethylene glycol administered to Wistar rats. Exp Toxicol Pathol 50(3):257–265CrossRefPubMedGoogle Scholar
  41. 41.
    Sathish R, Natarajan K, Nikhad M (2010) Effect of Hygrophila spinosa T. Anders on ethylene glycol induced urolithiasis in rats. AJPCR 3:61–63Google Scholar
  42. 42.
    Bahuguna Y, Rawat MM, Juyal V, Gupta V (2009) Antilithiatic effect of flower Jasmin auriculatum Vahl. IJGP 3:155–163. doi: 10.4103/0973-8258.54910 CrossRefGoogle Scholar
  43. 43.
    Atmani F, Sadki C, Aziz M, Mimouni M, Hacht B (2009) Cynodon dactylon extract as a preventive and curative agent in experimentally induced nephrolithiasis. Urol Res 37:75–82CrossRefPubMedGoogle Scholar
  44. 44.
    Kok DJ, Papapoulos SE, Bijvoet OL (1986) Excessive crystal agglomeration with low citrate excretion in recurrent stone-formers. Lancet 10:1056–1058CrossRefGoogle Scholar
  45. 45.
    Lieske JC, Hammes MS, Hoyer JR, Toback FG (1997) Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals. Kid Int 51:679–686CrossRefGoogle Scholar
  46. 46.
    Umekawa T, Iguchi M, Kurita T (2001) The effect of osteopontin immobilized collagen granules in the seed crystal method. Urol Res 29(4):282–286CrossRefPubMedGoogle Scholar
  47. 47.
    Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: Analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25(12):2712–2723PubMedGoogle Scholar
  48. 48.
    Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on madin darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62(2):81–86CrossRefPubMedGoogle Scholar
  49. 49.
    Stapleton AMF, Seymour AE, Brennan JS, Doyle IR, Marshall VR, Ryall RL (1993) Immunohistochemical distribution and quantification of crystal matrix protein. Kidney Int 44:817–824CrossRefPubMedGoogle Scholar
  50. 50.
    Iida S, Peck AB, Johnson-Tardieu J, Moriyama M, Glenton PA, Byer KJ, Khan SR (1999) Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 10:986–996PubMedGoogle Scholar
  51. 51.
    Marengo SR, Chen DH, Kaung HL, Resnick MI, Yang L (2002) Decreased renal expression of the putative calcium oxalate inhibitor Tamm-Horsfall protein in the ethylene glycol rat model of calcium oxalate urolithiasis. J Urol 16:2192–2197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Dr. Panjwani Center for Molecular Medicine and Drug ResearchInternational Center for Chemical and Biological Sciences, University of KarachiKarachiPakistan
  2. 2.H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
  3. 3.Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations