Skip to main content

The trigger-maintenance model of persistent mild to moderate hyperoxaluria induces oxalate accumulation in non-renal tissues


Persistent mild to moderate hyperoxaluria (PMMH) is a common side effect of bariatric surgery. However, PMMH's role in the progression to calcium oxalate (CaOx) urolithiasis and its potential effects on non-renal tissues are unknown. To address these points, a trigger + maintenance (T + Mt) model of PMMH was developed in rats (Experiment 1). The trigger was an i.p. injection of PBS (TPBS) or 288 μmol sodium oxalate (T288). Maintenance (Mt) was given via minipumps dispensing PBS or 7.5–30 μmol potassium oxalate/day for 28 days. Urinary oxalate ranged from 7.7 ± 0.8 μmol/day for TPBS + MtPBS to 18.2 ± 1.5 μmol/day for T288 + Mt30 (p ≤ 0.0005). All rats receiving T288 developed CaOx nephrocalcinosis, and many developed ‘stones’. This was also true for Mt doses that did not elevate urinary oxalate above that of TPBS + MtPBS (p > 0.1) and for rats that did not have a detectable surge in urinary oxalate post T288. When TPBS was administered, CaOx nephrocalcinosis did not develop regardless of the Mt dose even if urinary oxalate was elevated compared to TPBS + MtPBS (p ≤ 0.0005). One of the risks associated with PMMH is oxalate accumulation within tissues. Hence, in a second set of experiments (Experiment 2) different doses of oxalate (Mt0.05, Mt15, Mt30) labeled with 14C-oxalate (14C-Ox) were administered by minipump for 13 days. Tissues were harvested and 14C-Ox accumulation assessed by scintillation counting. 14C-Ox accumulated in a dose dependent manner (p ≤ 0.004) in bone, kidney, muscle, liver, heart, kidney, lungs, spleen, and testis. All these tissues exhibited 14C-Ox concentrations higher (p ≤ 0.05) than the plasma. Extrapolation of our results to patients suggests that PMMH patients should take extra care to avoid dietary-induced spikes in oxalate excretion to help prevent CaOx nephrocalcinosis or stone development. Monitoring for oxalate accumulation within tissues susceptible to damage by oxalate or CaOx crystals may also be required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Robertson DS (2011) The function of oxalic acid in the human metabolism. Clin Chem Lab Med 49:1405–1412

    PubMed  CAS  Google Scholar 

  2. 2.

    Marengo SR, Romani AM (2008) Oxalate in renal stone disease: the terminal metabolite that just won’t go away. Nat Clin Pract Nephrol 4:368–377

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Franceschi VR, Loewus FA (1995) Oxalate biosynthesis and function in plants and fungi. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, New York, pp 73–112

    Google Scholar 

  4. 4.

    Chiesi M, Ho MM, Inesi G, Somlyo AV, Somlyo AP (1981) Primary role of sarcoplasmic reticulum in phasic contractile activation of cardiac myocytes with shunted myolemma. J Cell Biol 91:728–742

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Chen DH, Kaung HL, Miller CM, Resnick MI, Marengo SR (2004) Microarray analysis of changes in renal phenotype in the ethylene glycol rat model of urolithiasis: potential and pitfalls. BJU Int 94:637–650

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Jonassen JA, Kohjimoto Y, Scheid CR, Schmidt M (2005) Oxalate toxicity in renal cells. Urol Res 33:329–339

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Chaiyarit S, Thongboonkerd V (2012) Changes in mitochondrial proteome of renal tubular cells induced by calcium oxalate monohydrate crystal adhesion and internalization are related to mitochondrial dysfunction. J Proteome Res 76:239–250

    Google Scholar 

  9. 9.

    Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Boer P, Prenen JA, Koomans HA, Dorhout Mees EJ (1985) Fractional oxalate clearance in subjects with normal and impaired renal function. Nephron 41:78–81

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Watts RW, Veall N, Purkiss P (1983) Sequential studies of oxalate dynamics in primary hyperoxaluria. Clin Sci (Lond) 65:627–633

    CAS  Google Scholar 

  12. 12.

    Asplin JR (2002) Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin North Am 31:927–949

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Coe FL, Evan AP, Lingeman JE, Worcester EM (2010) Plaque and deposits in nine human stone diseases. Urol Res 38:239–247

    PubMed  Article  Google Scholar 

  14. 14.

    Robertson WG, Hughes H (1993) Importance of mild hyperoxaluria in the pathogenesis of urolithiasis–new evidence from studies in the Arabian peninsula. Scanning Microsc 7:391–392

    PubMed  CAS  Google Scholar 

  15. 15.

    Rizvi SA, Naqvi SA, Hussain Z, Hashmi A, Hussain M, Zafar MN, Mehdi H, Khalid R (2002) The management of stone disease. BJU International 89(Suppl 1):62–68

    PubMed  Article  Google Scholar 

  16. 16.

    Terribile M, Capuano M, Cangiano G, Carnovale V, Ferrara P, Petrarulo M, Marangella M (2006) Factors increasing the risk for stone formation in adult patients with cystic fibrosis. Nephrol Dial Transplant 21:1870–1875

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Parks JH, Worcester EM, O’Connor RC, Coe FL (2003) Urine stone risk factors in nephrolithiasis patients with and without bowel disease. Kidney Int 63:255–265

    PubMed  Article  Google Scholar 

  18. 18.

    Patel BN, Passman CM, Fernandez A, Asplin JR, Coe FL, Kim SC, Lingeman JE, Assimos D (2009) Prevalence of hyperoxaluria after bariatric surgery. J Urol 181:161–166

    PubMed  Article  Google Scholar 

  19. 19.

    Maalouf NM, Tondapu P, Guth ES, Livingston EH, Sakhaee K (2010) Hypocitraturia and hyperoxaluria after Roux-en-Y gastric bypass surgery. J Urol 183:1026–1030

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Sarica K, Akarsu E, Erturhan S, Yagci F, Aktaran S, Altay B (2008) Evaluation of urinary oxalate levels in patients receiving gastrointestinal lipase inhibitor. Obesity (Silver Spring) 16:1579–1584

    Article  CAS  Google Scholar 

  21. 21.

    Nasr SH, D’Agati VD, Said SM, Stokes MB, Largoza MV, Radhakrishnan J, Markowitz GS (2008) Oxalate nephropathy complicating Roux-en-Y Gastric Bypass: an under recognized cause of irreversible renal failure. Clin J Am Soc Nephrol 3:1676–1683

    PubMed  Article  Google Scholar 

  22. 22.

    Singh A, Sarkar SR, Gaber LW, Perazella MA (2007) Acute oxalate nephropathy associated with orlistat, a gastrointestinal lipase inhibitor. Am J Kidney Dis 49:153–157

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Broyer M, Jouvet P, Niaudet P, Daudon M, Revillon Y (1996) Management of oxalosis. Kidney Int Suppl 53:S93–S98

    PubMed  CAS  Google Scholar 

  24. 24.

    Dai DF, Rabinovitch PS, Ungvari Z (2012) Mitochondria and cardiovascular aging. Circ Res 110:1109–1124

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Naudi AJM, Ayala V, Cassanye A, Serrano J, Gonzalo H, Boada J, Prat J, Portero-Otin M, Pamplona R (2012) Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res 2012:696215 Epub 692012 Jan 696212

    PubMed  Article  Google Scholar 

  26. 26.

    Manabe I (2011) Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ J 75:2739–2748

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Vermeulen CW, Lyon ES, Ellis JE, Borden TA (1967) The renal papilla and calculogenesis. J Urol 97:573–582

    PubMed  CAS  Google Scholar 

  28. 28.

    Marengo SR, Chen DH-C, MacLennan GT, Resnick MI, Jacob GH (2004) Minipump induced hyperoxaluria and crystal deposition in rats: a model for calcium oxalate urolithiasis. J Urol 171:1304–1308

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Marengo SR, Chen DH-C, Evan AP, Sommer AJ, Stowe NT, Ferguson DG, MacLennan GF (2006) Continuous infusion of oxalate by minipumps induces calcium oxalate nephrocalcinosis. Urol Res 34:200–210

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Marengo SR, Zhang A, Traverso EJ (2008) Partitioning of 14C-oxalate excretion in rats during a persistent oxalate challenge. Urol Res 36:319–326

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Harris AH, Freel RW, Hatch M (2004) Serum oxalate in human beings and rats as determined with the use of ion chromatography. J Lab Clin Med 144:45–52

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Hatch M, Freel RW (2005) Intestinal transport of an obdurate anion: oxalate. Urol Res 33:1–16

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Freel RW, Hatch M, Green M, Soleimani M (2006) Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am J Physiol Gastrointest Liver Physiol 290:G719–G728

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Scowen EF, Stansfeld AG, Watts RWE (1959) Oxalosis and primary hyperoxaluria. J Path Bact 77:195–205

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Wareing M, Green R (1994) Effect of formate and oxalate on fluid reabsorption from the proximal convoluted tubule of the anaesthetized rat. J Physiol 477:347–354

    PubMed  CAS  Google Scholar 

  36. 36.

    Schepers SJ, Duim RA, Asselman M, Romijn JC, Schroder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 64:493–500

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Prenen JA, Dorhout Mees EJ, Boer P (1985) Plasma oxalate concentration and oxalate distribution volume in patients with normal and decreased renal function. Eur J Clin Invest 15:45–49

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Sugimoto T, Osswald H, Yamamoto K, Kanazawa T, Iimori H, Funae Y, Kamikawa S, Kishimoto T (1993) Fate of circulating oxalate in rats. Eur Urol 23:485–489

    PubMed  CAS  Google Scholar 

  39. 39.

    Costello JF, Smith M, Stolarski C, Sadovnic MJ (1992) Extrarenal clearance of oxalate increases with progression of renal failure in the rat. J Am Soc Nephrol 3:1098–1104

    PubMed  CAS  Google Scholar 

  40. 40.

    Blumenfrucht MJ, Cheeks C, Wedeen RP (1986) Multiorgan crystal deposition following intravenous oxalate infusion in rat. J Urol 135:1274–1279

    PubMed  CAS  Google Scholar 

  41. 41.

    Jennings ML, Adame MF (1996) Characterization of oxalate transport by the human erythrocyte band 3 protein. J Gen Physiol 107:145–159

    PubMed  Article  CAS  Google Scholar 

Download references


This work was supported by the American Urological Foundation and the National Institutes of Health (DK62073, DK073730). Appreciation is expressed to C. A. Mayer and N. Courtney for expert technical assistance and to the Ion Analysis and Hyperoxaluria Laboratory of Wake Forest School of Medicine (Winston-Salem, NC). Appreciation is also expressed to J. W. Jacobberger for the generous access to his laboratory’s resources. This work is dedicated to my editor, the late Steven E. Brown, and my first mentor R. J. Wall.

Conflict of interest

None of the authors have any form of financial or personal conflict of interest with this investigation or manuscript.

Author information



Corresponding author

Correspondence to Susan Ruth Marengo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marengo, S.R., Zeise, B.S., Wilson, C.G. et al. The trigger-maintenance model of persistent mild to moderate hyperoxaluria induces oxalate accumulation in non-renal tissues. Urolithiasis 41, 455–466 (2013).

Download citation


  • Oxalosis
  • Hyperoxaluria
  • Stone
  • Kidney
  • Rat
  • Calcium oxalate