Skip to main content

Advertisement

Log in

Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Renal tubular cell injury induced by oxalate plays an important role in kidney stone formation. Water containing oxygen nano-bubbles (nanometer-sized bubbles generated from oxygen micro-bubbles; ONB) has anti-inflammatory effects. Therefore, we investigated the inhibitory effects of ONB water on kidney stone formation in ethylene glycol (EG)-treated rats. We divided 60 rats, aged 4 weeks, into 5 groups: control, the water-fed group; 100 % ONB, the 100 % ONB water-fed group; EG, the EG treated water-fed group; EG + 50 % ONB and EG + 100 % ONB, water containing EG and 50 % or 100 % ONB, respectively. Renal calcium oxalate (CaOx) deposition, urinary excretion of N-acetyl-β-d-glucosaminidase (NAG), and renal expression of inflammation-related proteins, oxidative stress biomarkers, and the crystal-binding molecule hyaluronic acid were compared among the 5 groups. In the control and 100 % ONB groups, no renal CaOx deposits were detected. In the EG + 50 % ONB and EG + 100 % ONB groups, ONB water significantly decreased renal CaOx deposits, urinary NAG excretion, and renal monocyte chemoattractant protein-1, osteopontin, and hyaluronic acid expression and increased renal superoxide dismutase-1 expression compared with the EG group. ONB water substantially affected kidney stone formation in the rat kidney by reducing renal tubular cell injury. ONB water is a potential prophylactic agent for kidney stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Curhan GC (2007) Epidemiology of stone disease. Urol Clin North Am 34:287–293

    Article  PubMed  Google Scholar 

  2. Tracy CR, Pearle MS (2009) Update on the medical management of stone disease. Curr Opin Urol 19:200–204

    Article  PubMed  Google Scholar 

  3. Hirose M, Tozawa K, Okada A et al (2008) Gyloxylate induces renal tubular cell injury and microstructural change in experimental mouse. Urol Res 36:139–147

    Article  PubMed  CAS  Google Scholar 

  4. Huang HS, Chen J, Chen CF, Ma MC (2006) Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int 70(4):699–710

    Article  PubMed  CAS  Google Scholar 

  5. Itoh Y, Yasui T, Okada A et al (2005) Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol 173:271–275

    Article  PubMed  Google Scholar 

  6. Yasui T, Itoh Y, Kohri K (2007) Aortic calcification in urolithiasis patients. Scand J Urol Nephrol 41:419–421

    Article  PubMed  CAS  Google Scholar 

  7. De Water R, Noordermeer C (2000) Role of macrophage in nephrolithiasis in rats: an analysis of renal interstitium. Am J Kidney Dis 36:615

    Article  PubMed  Google Scholar 

  8. Denhardt DT, Noda M, O’Regan AW et al (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi M (2005) Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas–water interface. J Phys Chem B 190:21858–21864

    Article  Google Scholar 

  10. Hayakumo S, Arakawa S, Mano Y, et al (2012) Clinical and microbiological effects of ozone nano-bubble water irrigation as an adjunct to mechanical subgingival debridement in periodontitis patients in a randomized controlled trial. Clin Oral Invest. (Epub ahead of print)

  11. Hojo Y, Takahashi M (2006) Anti-inflammatory property of oxygen nano-bubbles. Circ J 70(Supplement 1):276

    Google Scholar 

  12. Hojo Y (2009) Anti-inflammatory and anti-proliferative action of oxygen nanobubbles. Mater Integr 22:44–48 (in Japanese)

    CAS  Google Scholar 

  13. Chiba K, Takahashi M (2007) Oxygen nanobubble water and method of producing the same. US patent, 2007/0286795 A1. Dec.13

  14. Takahashi M, Chiba K, Li Pan (2007) Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J Phys Chem B 111:1343–1347

    Article  PubMed  CAS  Google Scholar 

  15. Agarwal A, Ng WJ, Liu Y (2011) Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84:1175–1180

    Article  PubMed  CAS  Google Scholar 

  16. Mano Y, Chiba K. Functional water production method. JP, 2011-72965, A. 2011-04-14

  17. Pizzolato P (1971) Mercurous nitrate as a histochemical reagent for calcium phosphate in bone and pathological calcification and for calcium oxalate. Histochem J 3:463–469

    Article  PubMed  CAS  Google Scholar 

  18. Okada A, Nomura S, Saeki Y et al (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637

    Article  PubMed  CAS  Google Scholar 

  19. Honda K, Yoshimura M, Rao TN et al (2003) Electrogenerated chemiluminescence of the ruthenium tris(2,2′)bipyridyl/amines system on a boron-doped diamond electrode. J Phys Chem B 107:1653–1663

    Article  CAS  Google Scholar 

  20. Tiselius HG, Ferraz RR, Heilberg IP (2003) An approximate estimate of the ion-activity product of calcium oxalate in rat urine. Urol Res 31:410–413

    Article  PubMed  CAS  Google Scholar 

  21. Coe FL, Evan A, Worcester E (2005) Kidney stone disease. J Clin Invest 115:2598–2608

    Article  PubMed  CAS  Google Scholar 

  22. Verkoelen CF (2006) Crystal retention in renal stone disease: a crucial role for the glycosaminoglycan hyaluronan? J Am Soc Nephrol 17:1673–1687

    Article  PubMed  CAS  Google Scholar 

  23. Matlaga BR, Coe FL, Evan AP et al (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38

    Article  PubMed  Google Scholar 

  24. Nankivell BJ, Borrows RJ, Fung CL et al (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349:2326–2333

    Article  PubMed  CAS  Google Scholar 

  25. Gobel U, Kettritz R, Schneider W et al (2001) The protean face of renal sarcoidosis. J Am Soc Nephrol 12:616–623

    PubMed  CAS  Google Scholar 

  26. Milliner DS, Wilson DM et al (2001) Phenotypic expression of primary hyperoxaluria: comparative features of types I and II. Kidney Int 59:31–36

    Article  PubMed  CAS  Google Scholar 

  27. Boettger T, Hubner CA, Maier H et al (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878

    Article  PubMed  CAS  Google Scholar 

  28. Moutsopoulos HM, Cledes J, Skopouli FN et al (1991) Nephrocalcinosis in Sjögren’s syndrome: a late sequela of renal tubular acidosis. J Intern Med 230:187–191

    Article  PubMed  CAS  Google Scholar 

  29. Umekawa T, Byer K, Khan SR (2005) Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 20:870–878

    Article  PubMed  CAS  Google Scholar 

  30. Kohri K, Nomura S, Kitamura Y et al (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184

    PubMed  CAS  Google Scholar 

  31. Kohri K, Suzuki Y, Yoshida K et al (1992) Molecular cloning and sequencing of cDNA encoding urinary stone protein, which is identical to osteopontin. Biochem Biophys Res Commun 30(184):859–864

    Article  Google Scholar 

  32. Yamate T, Kohri K, Umekawa T et al (1999) Interaction between osteopontin on madin darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86

    Article  PubMed  CAS  Google Scholar 

  33. Kumar V, Peña de la Vega L, Farell G et al (2005) Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int 68:1784–1792

    Article  PubMed  Google Scholar 

  34. Hamamoto S, Nomura S, Yasui T et al (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25:2712–2723

    PubMed  Google Scholar 

  35. Asselman M, Verhulst A, Ballegooijen ESV (2005) Hyaluronan is apically secreted and expressed by proliferating or regenerating renal tubular cells. Kidney Int 68:71–83

    Article  PubMed  CAS  Google Scholar 

  36. Tammi MI, Day AJ, Turley EA (2002) Hyaluronan and homeostasis: a balancing act. J Biol Chem 15(277):4581–4584

    Article  Google Scholar 

  37. Huang HS, Ma MC, Chen J et al (2002) Changes in the oxidant-antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J Urol 167:2584–2593

    Article  PubMed  CAS  Google Scholar 

  38. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD(SOD1), Mn-SOD(SOD2), and EC-SOD(SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  PubMed  CAS  Google Scholar 

  39. Sakata K, Yamasaki K (2007) Waste water treatment by micro- and nano-bubble technology in the cleaning process of semiconductor manufacturing. J JSMF 21:203–204

    Google Scholar 

  40. Onari H (2001) Fisheries experiments of cultivated shells using micro-bubbles techniques. J Heat Transf Soc Japan 40:2–7 (in Japanese)

    CAS  Google Scholar 

  41. Tsutsumi H (2010) Application of micorobubble injector to marine fish farming and its future perspective. Bull Soc Sea Water Sci Jpn 64:31–38 (in Japanese)

    CAS  Google Scholar 

  42. Park JS (2010) Promotion of lettuce growth by application of microbubbles in nutrient solution using different rates of electrical conductivity and under periodic intermittent generation in a deep flow technique culture system. Eur J Hortic Sci 75:198–203

    Google Scholar 

  43. Park J, Kurata K (2009) Application of microbubbles to hydroponics solution promotes lettuce growth. Hortic Technol 19:212–215

    Google Scholar 

  44. Ushikubo FY, Furukawa T, Nakagawa R, Enari M, Shiina T, Oshita S et al (2010) Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf A 361:31–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yoshihiro Mano of the Hyperbaric Medical Center, Hospital of Medicine, Tokyo Medical and Dental University for providing ONB water and valuable comments and Masayoshi Takahashi of the National Institute of Advanced Industrial Science and Technology for providing valuable comments. This study was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT/JSPSKAKENHI Grant Number 22791483 and 24659716 and 23592374).

Conflict of interest

All the authors declared no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Yasui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, Y., Yasui, T., Taguchi, K. et al. Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney. Urolithiasis 41, 279–294 (2013). https://doi.org/10.1007/s00240-013-0576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-013-0576-5

Keywords

Navigation