Skip to main content

Advertisement

Log in

The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

In vivo, urinary crystals are associated with proteins located within the mineral bulk as well as upon their surfaces. Proteins incarcerated within the mineral phase of retained crystals could act as a defence against urolithiasis by rendering them more vulnerable to destruction by intracellular and interstitial proteases. The aim of this study was to examine the effects of intracrystalline and surface-bound osteopontin (OPN) on the degradation and dissolution of urinary calcium oxalate dihydrate (COD) crystals in cultured Madin Darby canine kidney (MDCK) cells. [14C]-oxalate-labelled COD crystals with intracrystalline (IC), surface-bound (SB) and IC + SB OPN, were generated from ultrafiltered (UF) urine containing 0, 1 and 5 mg/L human milk OPN and incubated with MDCKII cells, using UF urine as the binding medium. Crystal size and degradation were assessed using field emission scanning electron microscopy (FESEM) and dissolution was quantified by the release of radioactivity into the culture medium. Crystal size decreased directly with OPN concentration. FESEM examination indicated that crystals covered with SB OPN were more resistant to cellular degradation than those containing IC OPN, whose degree of disruption appeared to be related to OPN concentration. Whether bound to the crystal surface or incarcerated within the mineral interior, OPN inhibited crystal dissolution in direct proportion to its concentration. Under physiological conditions OPN may routinely protect against stone formation by inhibiting the growth of COD crystals, which would encourage their excretion in urine and thereby perhaps partly explain why, compared with calcium oxalate monohydrate crystals, COD crystals are more prevalent in urine, but less common in kidney stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vervaet BA, Verhulst A, D’Haese PC, De Broe ME (2009) Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol Dial Transpl 24:2030–2035

    Article  CAS  Google Scholar 

  2. Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38:147–160

    Article  PubMed  Google Scholar 

  3. Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scan Microsc Int 9:89–101

    CAS  Google Scholar 

  4. Evan AP, Coe FL, Rittling SR, Bledsoe SB, Shao Y, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 68:145–154

    Article  PubMed  CAS  Google Scholar 

  5. Evan AP, Lingeman JE, Worcester EM, Bledsoe SB, Sommer AJ, Williams JC, Krambeck AE, Philips CL, Coe FL (2010) Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney Int 78:310–317

    Article  PubMed  CAS  Google Scholar 

  6. Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic CaOx stones. Anat Rec 291:325–334

    Article  Google Scholar 

  7. Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D’Haese PC, Verkoelen CF, De Broe ME (2005) Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int 68:1643–1647

    Article  PubMed  Google Scholar 

  8. Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 75:41–51

    Article  PubMed  CAS  Google Scholar 

  9. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao Y, Sommers AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616

    PubMed  CAS  Google Scholar 

  10. Beer E (1904) Lime deposits especially the so-called “kalkmetastasen”, in the kidney. J Pathol Bacteriol 9:225–233

    Article  Google Scholar 

  11. Stout HA, Akin RH, Morton E (1955) Nephrocalcinosis in routine necropsies: its relationship to stone formation. J Urol 74:8–22

    PubMed  CAS  Google Scholar 

  12. Bennington JL, Haber SL, Smith JV, Warner NE (1964) Crystals of calcium oxalate in the human kidney. Am J Clin Pathol 41:8–14

    PubMed  CAS  Google Scholar 

  13. Ebisuno S, Kohjimoto Y, Tamura M, Inagaki T, Ohkawa T (1997) Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney. Urol Int 58:227–231

    Article  PubMed  CAS  Google Scholar 

  14. Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the ‘fixed particle’ theory in vivo. Nephrol Dial Transpl 24:3659–3668

    Article  CAS  Google Scholar 

  15. Kumar V, Farell G, Yu S, Harrington S, Fitzpatrick L, Rzewuska E, Miller VM, Lieske JC (2006) Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J Invest Med 54:412–424

    Article  CAS  Google Scholar 

  16. Ryall RL (2011) The possible roles of inhibitors, promoters and macromolecules in the formation of calcium kidney stones. In: Rao N, Kavanagh JP, Preminger G (eds) Urinary tract stone disease. Springer, London, pp 31–60

    Google Scholar 

  17. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482

    Article  PubMed  CAS  Google Scholar 

  18. Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42

    Article  Google Scholar 

  19. Kumar V, Yu S, Farell G, Toback FG, Lieske JC (2004) Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. Am J Physiol Renal Physiol 287:F373–F383

    Article  PubMed  CAS  Google Scholar 

  20. Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol Renal Physiol 268:F604–F612

    CAS  Google Scholar 

  21. Kohjimoto Y, Ebisuno S, Tamura M, Ohkawa T (1996) Adhesion and endocytosis of calcium oxalate crystals on renal tubular cells. Scanning Microsc 10:459–470

    PubMed  CAS  Google Scholar 

  22. Lieske JC, Toback FG (1993) Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. Am J Physiol Renal Physiol 264:F800–F807

    CAS  Google Scholar 

  23. Tsujihata M, Yoshimura K, Tsujikawa K, Tei N, Okuyama A (2006) Fibronectin inhibits endocytosis of calcium oxalate crystals by renal tubular cells. Int J Urol 13:743–746

    Article  PubMed  CAS  Google Scholar 

  24. Ebisuno S, Nishihata M, Inagaki T, Umehara M, Kohjimoto Y (1999) Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine. J Am Soc Nephrol 10(Suppl 14):S436–S440

    PubMed  CAS  Google Scholar 

  25. Tei N, Tsujihata M, Tsujikawa K, Yoshimura K, Nonomura N, Okuyama A (2006) Hepatocyte growth factor has protective effects on crystal–cell interactions and crystal deposits. Urology 67:864–869

    Article  PubMed  Google Scholar 

  26. Verkoelen CF, Van Der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 58:1045–1054

    Article  PubMed  CAS  Google Scholar 

  27. Verkoelen CF, van der Boom BG, Houtsmuller AB, Schröder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol 274:F958–F965

    PubMed  CAS  Google Scholar 

  28. Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME (2003) Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a non-adherent epithelium. J Am Soc Nephrol 14:107–114

    Article  PubMed  CAS  Google Scholar 

  29. Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 14:3155–3166

    Article  PubMed  CAS  Google Scholar 

  30. Yamate T, Kohri K, Umekawa T, Amasaki N, Amasaki N, Isikawa Y, Iguchi M, Kurita T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol 30:388–393

    PubMed  CAS  Google Scholar 

  31. Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin–Darby canine kidney cell. J Urol 160:1506–1512

    Article  PubMed  CAS  Google Scholar 

  32. Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62:81–86

    Article  PubMed  CAS  Google Scholar 

  33. Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 15:2057–2065

    Article  PubMed  CAS  Google Scholar 

  34. Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297

    Article  PubMed  CAS  Google Scholar 

  35. Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, Akiyama T (1991) Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. Eur Urol 19:249–252

    PubMed  CAS  Google Scholar 

  36. Asselman M, Verkoelen CF (2002) Crystal-cell interaction in the pathogenesis of kidney stone disease. Curr Opin Urol 12:271–276

    Article  PubMed  Google Scholar 

  37. Kramer G, Steiner GE, Prinz-Kashani M, Bursa B, Marberger M (2003) Cell-surface matrix proteins and sialic acids in cell–crystal adhesion; the effect of crystal binding on the viability of human CAKI-1 renal epithelial cells. Br J Urol 91:554–559

    Article  CAS  Google Scholar 

  38. de Bruijn WC, Boevé ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9:103–114

    PubMed  Google Scholar 

  39. de Bruijn WC, Boevé ER, van Run PR, van Miert PP, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1994) Etiology of experimental cacluium oxalate monohydrate nephrolithiasis in rats. Scanning Microsc 8:541–549

    PubMed  CAS  Google Scholar 

  40. de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schröder FH, Kok DJ (2000) The role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625

    Article  PubMed  Google Scholar 

  41. de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schröder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38:331–338

    Article  PubMed  Google Scholar 

  42. de Water R, Nordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771

    Article  PubMed  Google Scholar 

  43. Schepers MS, Duim RA, Asselman M, Romijn JC, Schröder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 64:493–500

    Article  PubMed  CAS  Google Scholar 

  44. Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17

    Article  PubMed  CAS  Google Scholar 

  45. Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 294:F355–F361

    Article  PubMed  CAS  Google Scholar 

  46. Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci 91:6987–6991

    Article  PubMed  CAS  Google Scholar 

  47. Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 52:1291–1301

    Article  PubMed  CAS  Google Scholar 

  48. Lieske JC, Deganello S, Toback FG (1999) Cell-crystal interactions and kidney stone formation. Nephron 81:8–17

    Article  PubMed  CAS  Google Scholar 

  49. Lieske JC, Walsh‐Reitz MM, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol 262:F622–F630

    Google Scholar 

  50. Lieske JC, Toback FG, Deganello S (1998) Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Kidney Int 54:796–803

    Article  PubMed  CAS  Google Scholar 

  51. Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402

    PubMed  CAS  Google Scholar 

  52. Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14

    Article  CAS  Google Scholar 

  53. Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. Br J Urol 96:654–663

    Article  CAS  Google Scholar 

  54. Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291

    Article  CAS  Google Scholar 

  55. Wang T, Thurgood LA, Grover PK, Ryall RL (2010) A comparison of the binding of urinary calcium oxalate monohydrate and dihydrate crystals to human kidney cells in urine. Br J Urol Int 106:1768–1774

    Article  CAS  Google Scholar 

  56. Lieske JC, Deganello S (1999) Nucleation, adhesion and internalization of calcium-containing urinary crystals by renal cells. J Am Nephrol Soc 10:S422–S429

    CAS  Google Scholar 

  57. Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V (2008) Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. J Proteome Res 7:2889–2896

    Article  PubMed  CAS  Google Scholar 

  58. Webber D, Chauvet MC, Ryall RL (2005) Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects. Urol Res 33:273–284

    Article  PubMed  CAS  Google Scholar 

  59. Chien YC, Masica DL, Gray JJ, Nguyen S, Vali H, McKee MD (2009) Modulation of calcium oxalate dihydrate growth by selective crystal-face binding of phosphorylated osteopontin and poly-aspartate peptide showing occlusion by sectoral (compositional) zoning. J Biol Chem 284:23491–23501

    Article  PubMed  CAS  Google Scholar 

  60. Thurgood LA, Cook AF, Sørensen ES, Ryall RL (2010) Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38:357–376

    Article  PubMed  CAS  Google Scholar 

  61. Thurgood LA, Wang T, Chataway TK, Ryall RL (2010) Comparison of the specific incorporation of intracrystalline proteins into urinary calcium oxalate monohydrate and dihydrate crystals. J Proteome Res 9:4745–4757

    Article  PubMed  CAS  Google Scholar 

  62. Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. PNAS 89:426–430

    Article  PubMed  CAS  Google Scholar 

  63. Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR (1998) Contribution of uropontin to inhibition of calcium oxalate crystallization. Kidney Int 53:194–199

    Article  PubMed  CAS  Google Scholar 

  64. Nishio S, Hatanaka M, Takeda H, Aoki K, Iseda T, Iwata H, Yokoyama M (2001) Calcium phosphate crystal-associated proteins: alpha-2-HS-glycoprotein, prothrombin fragment 1 and osteopontin. Int J Urol 8:S58–S62

    Article  PubMed  CAS  Google Scholar 

  65. Thurgood LA, Sorensen ES, Ryall RL (2011) The effect of intracrystalline and surface-bound osteopontin on the attachment of calcium oxalate dihydrate crystals to MDCKII cells in ultrafiltered human urine. Br J Urol (in press)

  66. Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47

    Article  CAS  Google Scholar 

  67. Okada A, Nomura S, Saeki Y, Higashibata Y, Hamamoto S, Hirose M, Itoh Y, Yasui T, Tozawa K, Kohri K (2008) Morphological conversion of calcium oxalate crystals into stones is regulated by osteopontin in mouse kidney. J Bone Miner Res 23:1629–1637

    Article  PubMed  CAS  Google Scholar 

  68. Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN-transgenic and OPN-knockout mice. J Bone Miner Res 25:2436–2447

    CAS  Google Scholar 

  69. Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48

    Article  PubMed  CAS  Google Scholar 

  70. Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292

    Article  PubMed  CAS  Google Scholar 

  71. Bautista DS, Denstedt JM, Chamber AF, Harris JF (1996) Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61:402–409

    Article  PubMed  CAS  Google Scholar 

  72. Thurgood LA, Grover PK, Ryall RL (2008) High calcium concentration and calcium oxalate crystals cause significant inaccuracies in the measurement of urinary osteopontin by enzyme linked immunosorbent assay. Urol Res 36:103–110

    Article  PubMed  CAS  Google Scholar 

  73. Ryall RL, Grover PK, Thurgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm-Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14

    Article  PubMed  CAS  Google Scholar 

  74. Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schröder FH, Romijn JC (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 55:1426–1433

    Article  PubMed  CAS  Google Scholar 

  75. Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403

    Article  PubMed  CAS  Google Scholar 

  76. Walton RC, Kavanagh JP, Heywood BR (2003) The density and protein content of calcium oxalate crystals precipitated from human urine: a tool to investigate ultrastructure and the fractional volume occupied by organic matrix. J Struct Biol 143:2–14

    Article  CAS  Google Scholar 

  77. Belliveau J, Griffin H (2001) The solubility of calcium oxalate in tissue culture media. Anal Biochem 291:69–73

    Article  PubMed  CAS  Google Scholar 

  78. Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. Br J Urol 105:708–715

    Article  CAS  Google Scholar 

  79. Hsu WL, Lin MJ, Hsu JP (2009) Dissolution of solid particles in liquids: a shrinking core model. World Acad Sci Eng Technol Chem Mater Eng 2:4–8

    Google Scholar 

  80. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987

    Article  PubMed  CAS  Google Scholar 

  81. Qiu SR, Orme CA (2008) Dynamics of biomineral formation at the near-molecular level. Chem Rev 108:4784–4822

    Article  PubMed  CAS  Google Scholar 

  82. Fleming DE (2004) Urolithiasis: occurrence and function of intracrystalline proteins in calcium oxalate monohydrate crystals. Dissertation, Curtin University of Technology, Western Australia. http://espace.library.curtin.edu.au/R?func=search-simple-go&ADJACENT=Y&REQUEST=adt-WCU20050124.093851

  83. White DJ, Coyle-Rees M, Nancollas GH (1988) Kinetic factors influencing the dissolution behaviour of calcium oxalate stones: a constant composition study. Calcif Tissue Int 43:319–327

    Article  PubMed  CAS  Google Scholar 

  84. Lepage L, Tawashi R (1982) Growth and characterization of calcium oxalate dihydrate crystals (weddellite). J Pharm Sci 71:1059–1062

    Article  PubMed  CAS  Google Scholar 

  85. Harrell PC, McCawley LJ, Fingleton B, McIntyre JO, Matrisian LM (2005) Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells. Exp Cell Res 303:308–320

    Article  PubMed  CAS  Google Scholar 

  86. McGwire GB, Becker RP, Skidgel RA (1999) Carboxypeptidase M, a glycosylphosphatidylinositol-anchored protein, is localized on both the apical and basolateral domains of polarized Madin-Darby canine kidney cells. J Biol Chem 274:31632–31640

    Article  PubMed  CAS  Google Scholar 

  87. Gstraunthaler G, Pfaller W, Kotanko P (1985) Biochemical characterization of renal epithelial cell cultures (LLC-PK1 and MDCK). Am J Physiol 248:F536–F544

    PubMed  CAS  Google Scholar 

  88. Hackett RL, Shevock PN, Khan SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22:197–204

    Article  PubMed  CAS  Google Scholar 

  89. Richardson JC, Scalera V, Simmons NL (1981) Identification of two strains of MDCK cells which resemble separate nephron tubule segments. Biochim Biophys Acta 673:26–36

    Article  PubMed  CAS  Google Scholar 

  90. Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L (2000) Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 76:478–488

    Article  PubMed  CAS  Google Scholar 

  91. Shalamanova L, Kübler B, Scharf JG, Braulke T (2001) MDCK cells secrete neutral proteases cleaving insulin-like growth factor-binding protein-2 to -6. Am J Physiol Endocrinol Metab 281:E1221–E1229

    PubMed  CAS  Google Scholar 

  92. Andersson G, Ek-Rylander B, Hollberg K, Ljusberg-Sjölander J, Lång P, Norgård M, Wang Y, Zhang SJ (2003) TRACP as an osteopontin phosphatase. J Bone Miner Res 18:1912–1915

    Article  PubMed  CAS  Google Scholar 

  93. Christensen B, Schack L, Kläning E, Sørensen ES (2010) Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D. J Biol Chem 285:7929–7937

    Article  PubMed  CAS  Google Scholar 

  94. Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267

    Article  PubMed  CAS  Google Scholar 

  95. Moriyama MT, Domiki C, Miyazawa K, Tanaka T, Suzuki K (2005) Effects of oxalate exposure on Madin-Darby canine kidney cells in culture: renal prothrombin fragment-1 mRNA expression. Urol Res 33:470–475

    Article  CAS  Google Scholar 

  96. Hartz PA, Wilson PD (1997) Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease (ADPKD): abnormalities in synthesis, molecular processing, polarity, and secretion. Biochem Mol Med 60:8–26

    Article  PubMed  CAS  Google Scholar 

  97. Neame PJ, Butler WT (1996) Post-translational modification in rat bone osteopontin. Connect Tissue Res 35:145–150

    Article  PubMed  CAS  Google Scholar 

  98. Christensen B, Kazanecki CC, Petersen TE, Rittling SR, Denhardt DT, Sørensen ES (2007) Cell type-specific post-translational modifications of mouse osteopontin are associated with different adhesive properties. J Biol Chem 282:19463–19472

    Article  PubMed  CAS  Google Scholar 

  99. Kasemo B, Lausmaa J (1994) Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102(Suppl 5):41–45

    Article  PubMed  Google Scholar 

  100. Malmström J, Shipovskov S, Christensen B, Sørensen ES, Kingshott P, Sutherland DS (2009) Adsorption and enzymatic cleavage of osteopontin at interfaces with different surface chemistries. Biointerphases 4:47–55

    Article  PubMed  CAS  Google Scholar 

  101. Nishiyama K, Sugawara K, Nouchi T, Kawano N, Soejima K, Abe S, Mizokami H (2008) Purification and cDNA cloning of a novel protease inhibitor secreted into culture supernatant by MDCK cells. Biologicals 36:122–133

    Article  PubMed  CAS  Google Scholar 

  102. Kon S, Ikesue M, Kimura C, Aoki M, Nakayama Y, Saito Y, Kurotaki D, Diao H, Matsui Y, Segawa T, Maeda M, Kojima T, Uede T (2008) Syndecan-4 protects against osteopontin-mediated acute hepatic injury by masking functional domains of osteopontin. J Exp Med 205:25–33

    Article  PubMed  CAS  Google Scholar 

  103. Shanmugam V, Chackalaparampil I, Kundu GC, Mukherjee AB, Mukherjee BB (1997) Altered sialylation of osteopontin prevents its receptor-mediated binding on the surface of oncogenically transformed TSB77 cells. Biochem 36:5729–5738

    Article  CAS  Google Scholar 

  104. Kugler P, Wolf G, Scherberich J (1985) Histochemical demonstration of peptidases in the human kidney. Histochem 83:337–341

    Article  CAS  Google Scholar 

  105. Singh AK (1993) Presence of lysosomal enzymes in the normal glomerular basement membrane matrix. Histochem J 25:562–568

    PubMed  CAS  Google Scholar 

  106. Yokota S, Tsuji H, Kato K (1985) Immunocytochemica localization of cathepsin D in lysosomes of cortical collecting tubule cells of the rat kidney. J Histochem Cytochem 33:191–200

    Article  PubMed  CAS  Google Scholar 

  107. ATCC (2011) ATCC catalogue search. http://www.atcc.org/ATCCAdvancedCatalogSearch/ProductDetails/tabid/452/Default.aspx?ATCCNum=CRL-2936&Template=cellBiology. Accessed 16 March 2011

  108. Huang HS, Chen CF, Chien CT, Chen J (2000) Possible biphasic changes of free radicals in ethylene glycol-induced nephrolithaisis in rats. BJU Int 85:1143–1149

    Article  PubMed  CAS  Google Scholar 

  109. Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129:1161–1162

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support from the National Institute of Diabetes and Digestive and Kidney Diseases (Grant 1R01-DK-064050-01A1), and Flinders Medical Centre Foundation and Volunteer Service is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary L. Ryall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurgood, L.A., Sørensen, E.S. & Ryall, R.L. The effect of intracrystalline and surface-bound osteopontin on the degradation and dissolution of calcium oxalate dihydrate crystals in MDCKII cells. Urol Res 40, 1–15 (2012). https://doi.org/10.1007/s00240-011-0423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-011-0423-5

Keywords

Navigation