Skip to main content

Advertisement

Log in

Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury

  • 11th International Urolithiasis Symposium
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19:1197–1203

    Article  PubMed  CAS  Google Scholar 

  2. Thamilselvan S, Byer KJ, Hackett RL, Khan SR (2000) Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:224–229

    Article  PubMed  CAS  Google Scholar 

  3. Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 157:1059–1063

    Article  PubMed  CAS  Google Scholar 

  4. Thamilselvan S, Menon M (2005) Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int 96:117–126

    Article  PubMed  CAS  Google Scholar 

  5. Maroni PD, Koul S, Chandhoke PS, Meacham RB, Koul HK (2005) Oxalate toxicity in cultured mouse inner medullary collecting duct cells. J Urol 174:757–760

    Article  PubMed  Google Scholar 

  6. Scheid C, Koul H, Hill WA, Luber-Narod J, Jonassen J, Honeyman T, Kennington L, Kohli R, Hodapp J, Ayvazian P, Menon M (1996) Oxalate toxicity in LLC-PK1 cells, a line of renal epithelial cells. J Urol 155:1112–1116

    Article  PubMed  CAS  Google Scholar 

  7. Khan SR, Byer KJ, Thamilselvan S, Hackett RL, McCormack WT, Benson NA, Vaughn KL, Erdos GW (1999) Crystal–cell interaction and apoptosis in oxalate-associated injury of renal epithelial cells. J Am Soc Nephrol 10(Suppl 14):S457–S463

    PubMed  CAS  Google Scholar 

  8. Wiessner JH, Hasegawa AT, Hung LY, Mandel NS (1999) Oxalate-induced exposure of phosphatidylserine on the surface of renal epithelial cells in culture. J Am Soc Nephrol 10(Suppl 14):S441–S445

    PubMed  CAS  Google Scholar 

  9. Jonassen JA, Cooney R, Kennington L, Gravel K, Honeyman T, Scheid CR (1999) Oxalate-induced changes in the viability and growth of human renal epithelial cells. J Am Soc Nephrol 10(Suppl 14):S446–S451

    PubMed  CAS  Google Scholar 

  10. Koul H, Kennington L, Nair G, Honeyman T, Menon M, Scheid C (1994) Oxalate-induced initiation of DNA synthesis in LLC-PK1 cells, a line of renal epithelial cells. Biochem Biophys Res Commun 205:1632–1637

    Article  PubMed  CAS  Google Scholar 

  11. Peixoto EB, Pessoa BS, Biswas SK, Lopes de Faria JB (2009) Antioxidant SOD mimetic prevents NADPH oxidase-induced oxidative stress and renal damage in the early stage of experimental diabetes and hypertension. Am J Nephrol 29:309–318

    Google Scholar 

  12. Rashed T, Menon M, Thamilselvan S (2004) Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol 24:557–568

    Google Scholar 

  13. Umekawa T, Byer K, Uemura H, Khan SR (2005) Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 20:870–878

    Google Scholar 

  14. Moriyama MT, Miyazawa K, Noda K, Oka M, Tanaka M, Suzuki K (2007) Reduction in oxalate-induced renal tubular epithelial cell injury by an extract from Quercus salicina Blume/Quercus stenophylla Makino. Urol Res 35:295–300

    Google Scholar 

  15. Thamilselvan V, Menon M, Thamilselvan S (2009) Oxalate-induced activation of PKC-alpha and -delta regulates NADPH oxidase-mediated oxidative injury in renal tubular epithelial cells. Am J Physiol Renal Physiol 297:F1399–F1410

    Google Scholar 

  16. Yoshioka I, Tsujihata M, Akanae W, Nonomura N, Okuyama A (2011) Angiotensin type-1 receptor blocker candesartan inhibits calcium oxalate crystal deposition in ethylene glycol-treated rat kidneys. Urology 77:1007.e9–1007.e14

    Google Scholar 

  17. Tsujihata M, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A (2011) Why does atorvastatin inhibit renal crystal retention? Urol Res. doi:10.1007/s00240-011-0370-1

  18. Zuo J, Khan A, Glenton PA, Khan SR (2011) Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Nephrol Dial Transplant 26:1785–1796

    Google Scholar 

  19. DeLeo FR, Quinn MT (1996) Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol 60:677–691

    PubMed  Google Scholar 

  20. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  21. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670

    Article  PubMed  CAS  Google Scholar 

  22. Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533

    Article  PubMed  CAS  Google Scholar 

  23. Kinsella BT, Erdman RA, Maltese WA (1991) Carboxyl-terminal isoprenylation of ras-related GTP-binding proteins encoded by rac1, rac2, and ralA. J Biol Chem 266:9786–9794

    PubMed  CAS  Google Scholar 

  24. Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105:875–886

    Article  PubMed  CAS  Google Scholar 

  25. Li C, Hu Y, Mayr M, Xu Q (1999) Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem 274:25273–25280

    Article  PubMed  CAS  Google Scholar 

  26. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK (2002) Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91:406–413

    Article  PubMed  CAS  Google Scholar 

  27. Jones GE, Allen WE, Ridley AJ (1998) The Rho GTPases in macrophage motility and chemotaxis. Cell Adhes Commun 6:237–245

    Article  PubMed  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. Hable WE, Reddy S, Julien L (2008) The Rac1 inhibitor, NSC23766, depolarizes adhesive secretion, endomembrane cycling, and tip growth in the fucoid alga, Silvetia compressa. Planta 227:991–1000

    Article  PubMed  CAS  Google Scholar 

  30. Khan SR (2005) Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 33:349–357

    Article  PubMed  CAS  Google Scholar 

  31. Ilbey YO, Ozbek E, Simsek A, Cekmen M, Somay A, Tasci AI (2009) Effects of pomegranate juice on hyperoxaluria-induced oxidative stress in the rat kidneys. Ren Fail 31:522–531

    Article  PubMed  Google Scholar 

  32. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31:3–9

    PubMed  CAS  Google Scholar 

  33. Byer K, Khan SR (2005) Citrate provides protection against oxalate and calcium oxalate crystal induced oxidative damage to renal epithelium. J Urol 173:640–646

    Article  PubMed  CAS  Google Scholar 

  34. Greene EL, Farell G, Yu S, Matthews T, Kumar V, Lieske JC (2005) Renal cell adaptation to oxalate. Urol Res 33:340–348

    Article  PubMed  CAS  Google Scholar 

  35. Scheid C, Koul H, Hill WA, Luber-Narod J, Kennington L, Honeyman T, Jonassen J, Menon M (1996) Oxalate toxicity in LLC-PK1 cells: role of free radicals. Kidney Int 49:413–419

    Article  PubMed  CAS  Google Scholar 

  36. Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T (2002) Angiotensin II and oxidative stress in Dahl Salt-sensitive rat with heart failure. Hypertension 40:834–839

    Article  PubMed  CAS  Google Scholar 

  37. Chabrashvili T, Tojo A, Onozato ML, Kitiyakara C, Quinn MT, Fujita T, Welch WJ, Wilcox CS (2002) Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 39:269–274

    Article  PubMed  CAS  Google Scholar 

  38. Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97:8010–8014

    Article  PubMed  CAS  Google Scholar 

  39. Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    Article  PubMed  CAS  Google Scholar 

  40. Bokoch GM, Zhao T (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid Redox Signal 8:1533–1548

    Article  PubMed  CAS  Google Scholar 

  41. Bokoch GM, Diebold BA (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100:2692–2696

    Article  PubMed  CAS  Google Scholar 

  42. Gu Y, Jia B, Yang FC, D’Souza M, Harris CE, Derrow CW, Zheng Y, Williams DA (2001) Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J Biol Chem 276:15929–15938

    Article  PubMed  CAS  Google Scholar 

  43. Kim C, Dinauer MC (2001) Rac2 is an essential regulator of neutrophil nicotinamide adenine dinucleotide phosphate oxidase activation in response to specific signaling pathways. J Immunol 166:1223–1232

    PubMed  CAS  Google Scholar 

  44. Corbetta S, Gualdoni S, Albertinazzi C, Paris S, Croci L, Consalez GG, de Curtis I (2005) Generation and characterization of Rac3 knockout mice. Mol Cell Biol 25:5763–5776

    Article  PubMed  CAS  Google Scholar 

  45. Leung K, Nagy A, Gonzalez-Gomez I, Groffen J, Heisterkamp N, Kaartinen V (2003) Targeted expression of activated Rac3 in mammary epithelium leads to defective postlactational involution and benign mammary gland lesions. Cells Tissues Organs 175:72–83

    Article  PubMed  CAS  Google Scholar 

  46. Hordijk PL (2006) Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98:453–462

    Article  PubMed  CAS  Google Scholar 

  47. Li SM, Zeng LW, Feng L, Chen DB (2010) Rac1-dependent intracellular superoxide formation mediates vascular endothelial growth factor-induced placental angiogenesis in vitro. Endocrinology 151:5315–5325

    Article  PubMed  CAS  Google Scholar 

  48. Moldovan L, Irani K, Moldovan NI, Finkel T, Goldschmidt-Clermont PJ (1999) The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signal 1:29–43

    Article  PubMed  CAS  Google Scholar 

  49. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103:7432–7437

    Article  PubMed  CAS  Google Scholar 

  50. Martin SF, Chatterjee S, Parinandi N, Alevriadou BR (2005) Rac1 inhibition protects against hypoxia/reoxygenation-induced lipid peroxidation in human vascular endothelial cells. Vascul Pharmacol 43:148–156

    Article  PubMed  CAS  Google Scholar 

  51. Yeh LH, Park YJ, Hansalia RJ, Ahmed IS, Deshpande SS, Goldschmidt-Clermont PJ, Irani K, Alevriadou BR (1999) Shear-induced tyrosine phosphorylation in endothelial cells requires Rac1-dependent production of ROS. Am J Physiol 276:C838–C847

    PubMed  CAS  Google Scholar 

  52. Vetter M, Chen ZJ, Chang GD, Che D, Liu S, Chang CH (2003) Cyclosporin A disrupts bradykinin signaling through superoxide. Hypertension 41:1136–1142

    Article  PubMed  CAS  Google Scholar 

  53. Mizuno T, Kaibuchi K, Ando S, Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y (1992) Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267:10215–10218

    PubMed  CAS  Google Scholar 

  54. Gregg D, Rauscher FM, Goldschmidt-Clermont PJ (2003) Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch. Am J Physiol Cell Physiol 285:C723–C734

    PubMed  CAS  Google Scholar 

  55. Grand RJ, Owen D (1991) The biochemistry of ras p21. Biochem J 279(Pt 3):609–631

    PubMed  CAS  Google Scholar 

  56. Downward J (1992) Regulatory mechanisms for ras proteins. Bioessays 14:177–184

    Article  PubMed  CAS  Google Scholar 

  57. Kwong CH, Malech HL, Rotrosen D, Leto TL (1993) Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Biochemistry 32:5711–5717

    Article  PubMed  CAS  Google Scholar 

  58. Heyworth PG, Knaus UG, Xu X, Uhlinger DJ, Conroy L, Bokoch GM, Curnutte JT (1993) Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol Biol Cell 4:261–269

    PubMed  CAS  Google Scholar 

  59. Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM (1993) Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J Biol Chem 268:20983–20987

    PubMed  CAS  Google Scholar 

  60. Abo A, Webb MR, Grogan A, Segal AW (1994) Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J 298(Pt 3):585–591

    PubMed  CAS  Google Scholar 

  61. Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H (1999) Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274:25051–25060

    Article  PubMed  CAS  Google Scholar 

  62. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 6:899–907

    PubMed  CAS  Google Scholar 

  63. Dang PM, Cross AR, Quinn MT, Babior BM (2002) Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67PHOX and cytochrome b558 II. Proc Natl Acad Sci USA 99:4262–4265

    Article  PubMed  CAS  Google Scholar 

  64. Bokoch GM (1995) Regulation of the phagocyte respiratory burst by small GTP-binding proteins. Trends Cell Biol 5:109–113

    Article  PubMed  CAS  Google Scholar 

  65. Wu RF, Gu Y, Xu YC, Nwariaku FE, Terada LS (2003) Vascular endothelial growth factor causes translocation of p47phox to membrane ruffles through WAVE1. J Biol Chem 278:36830–36840

    Article  PubMed  CAS  Google Scholar 

  66. Silva GB, Garvin JL (2010) Rac1 mediates NaCl-induced superoxide generation in the thick ascending limb. Am J Physiol Renal Physiol 298:F421–F425

    Article  PubMed  CAS  Google Scholar 

  67. Patil S, Bunderson M, Wilham J, Black SM (2004) Important role for Rac1 in regulating reactive oxygen species generation and pulmonary arterial smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol 287:L1314–L1322

    Article  PubMed  CAS  Google Scholar 

  68. Lemarie A, Bourdonnay E, Morzadec C, Fardel O, Vernhet L (2008) Inorganic arsenic activates reduced NADPH oxidase in human primary macrophages through a Rho kinase/p38 kinase pathway. J Immunol 180:6010–6017

    PubMed  CAS  Google Scholar 

  69. Zou AP, Li N, Cowley A W Jr (2001) Production and actions of superoxide in the renal medulla. Hypertension 37:547–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institute of Diabetes and Digestive and Kidney Diseases Grant NIH RO1 DK056249. This work was orally presented at the 11th International Symposium on Urolithiasis, Nice, France, September 2–5, 2008 and published in abstract form [Urol Res 36(3–4): 203, 2008].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivagnanam Thamilselvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thamilselvan, V., Menon, M. & Thamilselvan, S. Selective Rac1 inhibition protects renal tubular epithelial cells from oxalate-induced NADPH oxidase-mediated oxidative cell injury. Urol Res 40, 415–423 (2012). https://doi.org/10.1007/s00240-011-0405-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-011-0405-7

Keywords

Navigation