Skip to main content

Advertisement

Log in

Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Our aim was to examine the attachment to, and incorporation of intact, highly phosphorylated osteopontin (OPN) into inorganic (i) and urinary (u) calcium oxalate monohydrate (COM) and dihydrate (COD) crystals. uCOM and uCOD crystals were precipitated from ultrafiltered (UF) urine containing human milk OPN (mOPN) labelled with Alexa Fluor 647 fluorescent dye at concentrations of 0.1–5.0 mg/L. iCOM and iCOD crystals were generated in aqueous solutions at concentrations of 0.01–0.5 mg/L. Crystals were demineralised with EDTA and the resulting extracts analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis and western blotting, or examined by fluorescent confocal microscopy and field emission scanning electron microscopy before and after washing to remove proteins bound reversibly to the crystal surfaces. Binding of mOPN to pre-formed iCOM crystals was also studied in phosphate-buffered saline (PBS) and ultrafiltered (UF) urine. mOPN attached to the {100} faces and to the {010} sides of the {100}/{010} edges of iCOM crystals was removed by washing, indicating that it was not incorporated into the mineral bulk. In both PBS and urine, mOPN was attached to the {021} faces of pre-formed iCOM crystals as well as to the {100}/{010} edges, but was concentrated at the intersection points of the {100} and {121} faces at the crystal tips. Attachment in UF urine appeared to be greater than in PBS and stronger at higher calcium concentrations than lower calcium concentrations. In uCOM crystals, the distribution of fluorescence and patterns of erosion after washing suggested attachment of mOPN to the four end faces, followed by interment within the mineral phase. Fluorescence distributions of mOPN associated with both iCOD and uCOD crystals were consistent with uniform binding of the protein to all equivalent {101} faces and concentration along the intersections between them. Persistence of fluorescence after washing indicated that most mOPN was incarcerated within the mineral phase. We concluded that attachment of mOPN to calcium oxalate crystals is face-specific and depends upon the anatomical and genetic source of the protein and whether the crystals are (1) COM or COD; (2) pre-formed or precipitated from solution, and (3) precipitated from urine or aqueous solutions. Our findings emphasise the need for caution when drawing conclusions about possible roles of OPN or other proteins in urolithiasis from experimental data obtained under inorganic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    Article  CAS  PubMed  Google Scholar 

  2. Addadi L, Weiner S, Geva M (2001) On how proteins interact with crystals and their effect on crystal formation. Z Kardiol 90:92–98

    Article  PubMed  Google Scholar 

  3. Weiner S, Addadi L (1991) Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci 16:252–256

    Article  CAS  PubMed  Google Scholar 

  4. Fleming DE, van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Min Res 18:1282–1291

    Article  CAS  Google Scholar 

  5. Ryall RL, Chauvet MC, Grover PK (2005) Intracrystalline proteins and urolithiasis: a comparison of the protein content and ultrastructure of urinary calcium oxalate monohydrate and dihydrate crystals. BJU Int 96:654–663

    Article  CAS  PubMed  Google Scholar 

  6. Doyle IR, Ryall RL, Marshall VR (1991) Inclusion of proteins into calcium oxalate crystals precipitated from human urine: a highly selective phenomenon. Clin Chem 37:1589–1594

    CAS  PubMed  Google Scholar 

  7. Merchant M, Cummins T, Wilkey D, Salyer S, Powell D, Klein J, Lederer E (2008) Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Renal Physiol 295:F1254–F1258

    Article  CAS  PubMed  Google Scholar 

  8. McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Min Res 10:1913–1929

    Article  CAS  Google Scholar 

  9. Tawada T, Fujita K, Sakakura T, Shibutani T, Nagata T, Iguchi M, Kohri K (1999) Distribution of osteopontin and calprotectin as matrix protein in calcium-containing stone. Urol Res 27:238–242

    Article  CAS  PubMed  Google Scholar 

  10. Hoyer JR, Otvos L, Urge L (1995) Osteopontin in urinary stone formation. Ann N Y Acad Sci 760:257–265

    Article  CAS  PubMed  Google Scholar 

  11. Kleinman JG, Wesson JA, Hughes J (2004) Osteopontin and calcium stone formation. Nephron Physiol 98:43–47

    Article  Google Scholar 

  12. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7:1475–1482

    CAS  PubMed  Google Scholar 

  13. Wang L, Qiu SR, Zachowicz W, Guan X, De Yoreo JJ, Nancollas GH, Hoyer JR (2006) Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides. Langmuir 22:7279–7285

    Article  CAS  PubMed  Google Scholar 

  14. Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES (2005) Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five o-glycosylation sites and their biological implications. Biochem J 390:285–292

    Article  CAS  PubMed  Google Scholar 

  15. Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS (2001) Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 280:460–465

    Article  CAS  PubMed  Google Scholar 

  16. Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG, Hoyer JR (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA 89:426–430

    Article  CAS  PubMed  Google Scholar 

  17. Worcester EM, Blumenthal SS, Beshensky AM, Lewand DL (1992) The calcium oxalate crystal growth inhibitor protein produced by mouse kidney cortical cells in culture is osteopontin. J Bone Min Res 7:1029–1036

    Article  CAS  Google Scholar 

  18. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatine-gel. Bone Miner 22:147–159

    Article  CAS  PubMed  Google Scholar 

  19. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64

    CAS  PubMed  Google Scholar 

  20. Saavedra RA (1994) The roles of autophosphorylation and phosphorylation in the life of osteopontin. Bioessays 16:913–918

    Article  CAS  PubMed  Google Scholar 

  21. Langdon A, Wignall GR, Rogers K, Sørensen ES, Denstedt J, Grohe B, Goldberg HA, Hunter GK (2009) Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microscopy. Calcif Tissue Int 84:240–248

    Article  CAS  PubMed  Google Scholar 

  22. Hunter GK, Grohe B, Jeffrey S, O’Young J, Sørensen ES, Goldberg HA (2009) Role of phosphate groups in inhibition of calcium oxalate crystal growth by osteopontin. Cells Tissue Org 189:44–50

    Article  CAS  Google Scholar 

  23. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sørensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54

    Article  CAS  PubMed  Google Scholar 

  24. de Bruijn WC, de Water R, van Run PR, Boevé ER, Kok DJ, Cao LC, Romijn HC, Verkoelen CF, Schröder FH (1997) Ultrastructural osteopontin localization in papillary stones induced in rats. Eur Urol 32:360–367

    PubMed  Google Scholar 

  25. de Water R, Noordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771

    Article  PubMed  Google Scholar 

  26. de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schröder FH, Kok DJ (2000) Role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625

    Article  PubMed  Google Scholar 

  27. de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schröder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals. Am J Kidney Dis 38:331–338

    Article  PubMed  Google Scholar 

  28. Mandel NS, Mandel GS (1989) Urinary tract stone incidence in the US veteran population: II. Geographical analysis of variations in composition. J Urol 142:1516–1521

    CAS  PubMed  Google Scholar 

  29. Dyer R, Nordin BE (1967) Urinary crystals and their relation to stone formation. Nature 215:751–752

    Article  CAS  PubMed  Google Scholar 

  30. Elliot JS, Rabinowitz IN (1980) Calcium oxalate crystalluria: crystal size in urine. J Urol 123:324–327

    CAS  PubMed  Google Scholar 

  31. Wesson JA, Worcester E (1996) Formation of hydrated calcium oxalates in the presence of poly-l-aspartic acid. Scanning Microsc Int 10:415–424

    CAS  Google Scholar 

  32. Wesson JA, Worcester EM, Wiessner JH, Mandel NS, Kleinmann JG (1998) Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 53:952–957

    Article  CAS  PubMed  Google Scholar 

  33. Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol 268:F604–F612

    CAS  PubMed  Google Scholar 

  34. Kumar V, Farell G, Lieske JC (2003) Whole urinary proteins coat calcium oxalate monohydrate crystals to greatly decrease their adhesion to renal cells. J Urol 170:221–225

    Article  CAS  PubMed  Google Scholar 

  35. Grover PK, Thurgood LA, Ryall RL (2007) Effect of urine fractionation on attachment of calcium oxalate crystals to renal epithelial cells: implications for studying renal calculogenesis. Am J Physiol Renal Physiol 292:F1396–F1403

    Article  CAS  PubMed  Google Scholar 

  36. Grover PK, Wang T, Thurgood LA, Ryall RL (2009) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. BJU Int (epub)

  37. Chien YC, Masica DL, Gray JJ, Nguyen S, Vali H, McKee MD (2009) Modulation of calcium oxalate dihydrate crystal growth by selective crystal face binding of phosphorylated osteopontin and poly-aspartate peptide showing occlusion by sectoral (compositional) zoning. J Biol Chem 284:23491–23501

    Article  CAS  PubMed  Google Scholar 

  38. Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, Zepeda S, De Yoreo JJ (2004) Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci 101:1811–1815

    Article  CAS  PubMed  Google Scholar 

  39. Taller A, Grohe B, Rogers KA, Goldberg HA, Hunter GK (2007) Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J 93:1768–1777

    Article  CAS  PubMed  Google Scholar 

  40. Grohe B, O’Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951

    Article  CAS  PubMed  Google Scholar 

  41. O’Young J, Chirico S, Al Tarhuni N, Grohe B, Karttunen M, Goldberg HA, Hunter GK (2009) Phosphorylation of osteopontin peptides mediates adsorption to and incorporation into calcium oxalate crystals. Cells Tissues Organs 189:51–55

    Article  PubMed  Google Scholar 

  42. Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48

    CAS  PubMed  Google Scholar 

  43. Ryall RL, Grover PK, Thurgood LA, Chauvet MC, Fleming DE, van Bronswijk W (2007) The importance of a clean face: the effect of different washing procedures on the association of Tamm-Horsfall glycoprotein and other urinary proteins with calcium oxalate crystals. Urol Res 35:1–14

    Article  CAS  PubMed  Google Scholar 

  44. Bautista DS, Denstedt J, Chambers AF, Harris JF (1996) Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. J Cell Biochem 61:402–409

    Article  CAS  PubMed  Google Scholar 

  45. Hoyer JR, Pietrzyk RA, Liu H, Whitson PA (1999) Effects of microgravity on urinary osteopontin. J Am Soc Nephrol 10:S389–S393

    CAS  PubMed  Google Scholar 

  46. Thurgood LA, Grover PK, Ryall RL (2008) High calcium concentration and calcium oxalate crystals cause significant inaccuracies in the measurement of urinary osteopontin by enzyme linked immunosorbent assay. Urol Res 36:103–110

    Article  CAS  PubMed  Google Scholar 

  47. Min W, Shiraga H, Chalko C, Goldfarb S, Krishna GG, Hoyer JR (1998) Quantitative studies of human urinary excretion of uropontin. Kidney Int 53:189–193

    Article  CAS  PubMed  Google Scholar 

  48. Cook AF, Grover PK, Ryall RL (2008) Face-specific binding of prothrombin fragment 1 and human serum albumin to inorganic and urinary calcium oxalate monohydrate crystals. BJU Int 103:826–835

    Article  PubMed  Google Scholar 

  49. Hess B, Ryall RL, Kavanagh JP, Khan SR, Kok D-J, Rodgers AL, Tiselius H-G (2001) Methods for measuring crystallization in urolithiasis research—why, how and when? Eur Urol 40:220–230

    Article  CAS  PubMed  Google Scholar 

  50. Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3:1169–1180

    CAS  PubMed  Google Scholar 

  51. Jung T, Sheng X, Choi CK, Kim WS, Wesson JA, Ward MD (2004) Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. Langmuir 20:8587–8596

    Article  CAS  PubMed  Google Scholar 

  52. Millan A (2001) Crystal growth shape of whewellite polymorphs: influence of structure distortions on crystal shape. Cryst Growth Des 1:245–254

    Article  CAS  Google Scholar 

  53. Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134:5–14

    Article  Google Scholar 

  54. Ryall RL, Fleming DE, Grover PK, Chauvet MC, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4:391–402

    CAS  PubMed  Google Scholar 

  55. Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron 98:37–42

    Article  Google Scholar 

  56. Khan SR, Kok DJ (2004) Modulation of urinary stone formation. Front Biosci 9:1450–1482

    Article  CAS  PubMed  Google Scholar 

  57. Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17

    Article  CAS  PubMed  Google Scholar 

  58. Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol 294:F336–F355

    Google Scholar 

  59. Wang L, Guan X, Tang R, Hoyer JR, Wierzbicki A, De Yoreo JJ, Nancollas GH (2008) Phosphorylation of osteopontin in required for inhibition of calcium oxalate crystallization. J Phys Chem B 112:9151–9157

    Article  CAS  PubMed  Google Scholar 

  60. Christensen B, Petersen TE, Sørensen ES (2008) Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 411:53–61

    Article  CAS  PubMed  Google Scholar 

  61. Kon S, Maeda M, Segawa T, Hagiwara Y, Horikoshi Y, Chikuma S, Tanaka K, Rashid MM, Inobe M, Chambers AF, Uede T (2000) Antibodies to different peptides in osteopontin reveal complexities in the various secreted forms. J Cell Biochem 77:487–498

    Article  CAS  PubMed  Google Scholar 

  62. Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300:723–728

    CAS  PubMed  Google Scholar 

  63. Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19:612–622

    Article  Google Scholar 

  64. Kasemo B, Lausmaa J (1994) Material-tissue interfaces: the role of surface properties and processes. Environ Health Perspect 102(Suppl 5):41–45

    Article  PubMed  Google Scholar 

  65. Boskey AL (1995) Osteopontin and related phosphorylated sialoproteins: effects on mineralization. Ann N Y Acad Sci 760:249–256

    Article  CAS  PubMed  Google Scholar 

  66. Beshensky AM, Wesson JA, Worcester EM, Sorokina EJ, Snyder CJ, Kleinman JG (2001) Effects of urinary macromolecules on hydroxyapatite crystal formation. J Am Soc Nephrol 12:2108–2116

    CAS  PubMed  Google Scholar 

  67. Guo SW, Ward MD, Wesson JA (2002) Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir 18:4284–4291

    Article  CAS  Google Scholar 

  68. Grohe B, Taller A, Vincent PL, Tieu LD, Rogers KA, Heiss A, Sørensen ES, Mittler S, Goldberg H, Hunter GK (2009) Crystallization of calcium oxalate is controlled by molecular hydrophilicity and specific polyanion-crystal interactions. Langmuir 25:11635–11646

    Article  CAS  PubMed  Google Scholar 

  69. Asplin JR, Arsenault D, Parks JH, Coe FL, Hoyer JR (1998) Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int 53:194–199

    Article  CAS  PubMed  Google Scholar 

  70. Sheng X, Ward MD, Wesson JA (2005) Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol 16:1904–1908

    Article  CAS  PubMed  Google Scholar 

  71. Chen Y, Bal BS, Gorski JP (1992) Calcium and collagen binding properties of osteopontin, bone sialoprotein, and bone acidic glycoprotein-75 from bone. J Biol Chem 267:24871–24878

    CAS  PubMed  Google Scholar 

  72. Tazzoli V, Domeneghetti C (1980) The crystal structures of whewellite and weddellite: re-examination and comparison. Am Mineral 65:327–334

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dr Jennifer Clarke for assistance with the confocal microscopy and to Dr Roger Qiu of the Lawrence Livermore National Laboratory, USA, for invaluable advice regarding the labelling of urinary COM crystal faces. Support from the National Institute of Diabetes and Digestive and Kidney Diseases (Grant 1R01-DK-064050-01A1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren A. Thurgood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurgood, L.A., Cook, A.F., Sørensen, E.S. et al. Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals. Urol Res 38, 357–376 (2010). https://doi.org/10.1007/s00240-010-0300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-010-0300-7

Keywords

Navigation