Skip to main content
Log in

A chronic outcome of shock wave lithotripsy is parenchymal fibrosis

  • SYMPOSIUM PAPER
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Shock wave lithotripsy (SWL) is widely viewed as an effective noninvasive method to break stones within the kidney and ureter. However, it is a technology that is not without trauma to the kidney—acute vascular, tubular and interstitial damage is often reported that if severe enough can lead to renal fibrosis (scarring) and permanent loss of functional parenchyma. These chronic changes can potentially lead to serious long-term adverse effects. The risk of developing chronic fibrotic lesions after lithotripsy is influenced by the number of shock waves (SWs) administered, SW power, rate of SW delivery and the number of SWL treatment sessions. The interplay between these risk factors is largely unknown, but progress has been made in identifying SWL protocols and pharmacologic therapies that can ameliorate the acute and chronic tissue damage that is an unintended consequence of SWL treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Evan AP, Willis LR (2007) Extracorporeal shock wave lithotripsy: complications. In: Smith AD et al (eds) Smith’s textbook on endourology. BC Decker Inc, Hamilton, pp 353–365

    Google Scholar 

  2. Evan AP, McAteer JA (1996) Q-effects of shock-wave lithotripsy. In: Coe FL, Favus MJ, Pak CYC, Preminger GM (eds) Kidney stones: medical and surgical management. Lippincott-Raven Publishers, Philadelphia, pp 549–570

    Google Scholar 

  3. Kishimoto T, Senju M, Sugimoto T, Yamamoto K, Sakamoto W, Iimori M, Kanasawa T, Wada S, Maekawa M (1990) Effects of high energy shock wave exposure on renal function during extracorporeal shock wave lithotripsy for kidney stones. Eur Urol 18:290–298

    CAS  PubMed  Google Scholar 

  4. Delvecchio FC, Auge BK, Munver R, Brown SA, Brizuela RM, Zhong P, Preminger GM (2003) Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point point: the role of regional vasoconstriction. J Urol 169:1526–1529

    Article  CAS  PubMed  Google Scholar 

  5. Clark DL, Connors BA, Evan AP, Willis LR, Handa RK, Gao S (2009) Localization of renal oxidative stress and inflammatory response after lithotripsy. BJU Int 103:1562–1568

    Google Scholar 

  6. Mostafavi MR, Chavez DR, Cannillo J, Saltzman B, Prasad PV (1998) Redistribution of renal blood flow after SWL evaluated by Gd-DTPA-enhanced magnetic resonance imaging. J Endourol 12:9–12

    Article  CAS  PubMed  Google Scholar 

  7. Handa RK, Willis LR, Evan AP, Connors BA (2008) Effect of shock wave lithotripsy on renal hemodynamics. In: Renal stone disease 2: proceedings of the 2nd international urolithiasis research symposium, AIP conference proceedings, vol 1049, pp 249–255

  8. Contran RS, Kumar V, Collins T (1999) Tissue repair: cellular growth, fibrosis, and wound healing. In: Robbins pathologic basis of disease, 6th edn. WB Saunders, Pennsylvania, pp 89–112

  9. Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15:290–301

    Article  CAS  PubMed  Google Scholar 

  10. Rigatti P, Colombo R, Centemero A, Francesca, Di Girolamo V, Montorsi F, Trabucchi E (1989) Histological and ultrastructural evaluation of extracorporeal shock wave lithotripsy-induced acute renal lesions: preliminary report. Eur Urol 16:207–211

  11. Lechevallier E, Siles S, Ortega JC, Coulange C (1993) Comparison by SPECT of renal scars after extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy. J Endourol 7:465–467

    Article  CAS  PubMed  Google Scholar 

  12. Morris JS, Husmann DA, Wilson WT, Preminger GM (1991) Temporal effects of shock wave lithotripsy. J Urol 145:881–883

    CAS  PubMed  Google Scholar 

  13. Newman R, Hackett R, Senior D, Brock K, Feldman J, Sosnowski J, Finlayson B (1987) Pathologic effects of ESWL on canine renal tissue. Urology 29:194–200

    Article  CAS  PubMed  Google Scholar 

  14. Karalezli G, Gögüs O, Bedük Y, Köküuslu C, Sarica K, Kutsal O (1993) Histopathologic effects of extracorporeal shock wave lithotripsy on rabbit kidney. Urol Res 21:67–70

    Article  CAS  PubMed  Google Scholar 

  15. Neuerburg J, Daus HJ, Recker F, Bohndorf K, Bex A, Guenther R, Hofstaedter F (1989) Effects of lithotripsy on rat kidney: evaluation with MR imaging, histology, and electron microscopy. J Comput Assist Tomogr 13:82–89

    Article  CAS  PubMed  Google Scholar 

  16. Recker F, Ruebben H, Neuerburg J, Bex A, Deutz FJ, Hofstaedter F (1990) Magnetic resonance imaging of acute and long-term alterations following extracorporeal shock wave lithotripsy in rats. Urol Int 45:28–33

    Article  CAS  PubMed  Google Scholar 

  17. Rassweiler J, Köhrmann KU, Back W, Fröhner S, Raab M, Weber A, Kahmann F, Marlinghaus E, Jünemann KP, Alken P (1993) Experimental basis of shockwave-induced renal trauma in the model of the canine kidney. World J Urol 11:43–53

    Article  CAS  PubMed  Google Scholar 

  18. Delius M, Mueller W, Goetz A, Liebich H-G, Brendel W (1990) Biological effects of shock waves: kidney hemorrhage in dogs at a fast shock wave administration rate of fifteen hertz. J Lithotr Stone Dis 2:103–110

    Google Scholar 

  19. Connors BA, Evan AP, Lofgren PM, Handa RK, Willis LR, Gao S, McAteer JA, Lingeman JE (2009) Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int 104:1004–1008

    Article  Google Scholar 

  20. Koga H, Matsuoka K, Noda S, Yamashita T (1996) Cumulative renal damage in dogs by repeated treatment with extracorporeal shock waves. Int J Urol 3:134–140

    Article  CAS  PubMed  Google Scholar 

  21. Kaji DM, Xie HW, Hardy BE, Sherrod A, Huffman JL (1991) The effects of extracorporeal shock wave lithotripsy on renal growth function and arterial blood pressure in an animal model. J Urol 146:544–547

    CAS  PubMed  Google Scholar 

  22. Morris JS, Husmann DA, Wilson WT, Denstedt J, Fulgham PF, Clayman RV, Preminger GM (1991) A comparison of renal damage induced by varying modes of shock wave generation. J Urol 145:864–867

    CAS  PubMed  Google Scholar 

  23. Cowley AW (1997) Role of the renal medulla in volume and arterial pressure regulation. Am J Physiol 273:R1–R15

    CAS  PubMed  Google Scholar 

  24. Knepper MA, Rector FC Jr (1991) Urinary concentration and dilution. In: Brenner BM, Rector FC Jr (eds) The kidney. WB Saunders, Philadelphia, pp 445–482

    Google Scholar 

  25. Alpern RJ, Stone DK, Rector FC Jr (1991) Renal acidification mechanisms. In: Brenner BM, Rector FC Jr (eds) The kidney. WB Saunders, Philadelphia, pp 318–379

    Google Scholar 

  26. Janetschek G, Frauscher F, Knapp R, Höfle G, Peschel R, Bartsch G (1997) New onset hypertension after extracorporeal shock wave lithotripsy: age related incidence and prediction by intrarenal resistive index. J Urol 158:346–351

    Article  CAS  PubMed  Google Scholar 

  27. Parks JH, Worcester EM, Coe FL, Evan AP, Lingeman JE (2004) Clinical implications of abundant calcium phosphate in routinely analyzed kidney stones. Kid Int 66:777–785

    Article  CAS  Google Scholar 

  28. McAteer JA, Evan AP (2008) The acute and long-term adverse effects of shock wave lithotripsy. Semin Nephrol 28:200–213

    Article  PubMed  Google Scholar 

  29. Willis LR, Evan AP, Connors BA, Handa RK, Lofgren PM, Lingeman JE (2006) Prevention of lithotripsy-induced renal injury by pretreating kidneys with low-energy shock waves. J Am Soc Nephrol 17:663–673

    Article  PubMed  Google Scholar 

  30. Connors BA, Evan AP, Lofgren PM, Handa RK, Willis LR, Gao S (2009) Effect of initial shock wave voltage on shock wave lithotripsy-induced lesion size during step-wise voltage ramping. BJU Int 103:104–107

    Article  PubMed  Google Scholar 

  31. Sarica K, Yencilek F (2008) Prevention of shockwave induced functional and morphological alterations: an overview. Arch Ital Urol Androl 80:27–33

    PubMed  Google Scholar 

  32. Tugcu V, Bas M, Ozbek E, Kemahli E, Arinci YV, Tuhri M, Altug T, Tasci AI (2008) Pyrolidium dithiocarbamate prevents shockwave lithotripsy-induced renal injury through inhibition of nuclear factor-kappa B and inducible nitric oxide synthase activity in rats. J Endourol 22:559–566

    Article  PubMed  Google Scholar 

  33. Bas M, Tugcu V, Kemahli E, Ozbek E, Uhri M, Altug T, Tasci AI (2009) Curcumin prevents shock-wave lithotripsy-induced renal injury through inhibition of nuclear factor kappa-B and inducible nitric oxide synthase activity in rats. Urol Res 37:159–164

    Article  CAS  PubMed  Google Scholar 

  34. Fegan JE, Husmann DA, Alexander ME, Feagins B, Preminger GM (1991) Preservation of renal architecture during extracorporeal shock wave lithotripsy. J Endourol 5:273–276

    Article  Google Scholar 

  35. Park HK, Lee HW, Lee KS, Choi JS, Jeong BC, Kim HH (2009) Preventive effects of COX-2 inhibitor, celecoxib on renal tubular injury induced by shock wave lithotriptor. Urol Res. doi:10.1007/s00240-009-0243-z

  36. Li B, Weizheng Z, Li P (1995) Protective effects of nifedipine and allopurinol on high energy shock wave induced changes on renal function. J Urol 153:596–598

    Article  CAS  PubMed  Google Scholar 

  37. Al-Awadi KA, Kehinde EO, Loutfi I, Mojiminiyi OA, Al-Hunayan A, Abdul-Halim H, Al-Sarraf A, Memon A, Abraham MP (2008) Treatment of renal calculi by lithotripsy: minimizing short-term shock wave induced renal damage by using antioxidants. Urol Res 36:51–60

    Article  CAS  PubMed  Google Scholar 

  38. Kehinde EO, Al-Awadi KA, Al-Hunayan A, Mojiminiyi OA, Memon A, Abdul-Halim H, Fatinikun T (2008) Antioxidant therapy is associated with a reduction in the serum levels of mediators of renal injury following lithotripsy for renal calculi. J Endourol 22:2537–2545

    Article  PubMed  Google Scholar 

  39. Strohmaier WL, Bichler KH, Koch J, Balk N, Wilbert DM (1993) Protective effect of verapamil on shock wave induced renal tubular dysfunction. J Urol 150:27–29

    CAS  PubMed  Google Scholar 

  40. Ogiste JS, Nejat RJ, Rashid HH, Greene T, Gupta M (2003) The role of mannitol in alleviating renal injury during extracorporeal shock wave lithotripsy. J Urol 169:875–877

    Article  PubMed  Google Scholar 

  41. Lingeman JE, McAteer JA, Gnessin E, Evan AP (2009) Shock wave lithotripsy: advances in technology and technique. Nat Rev Urol 6:660–670

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by National Institute of Health grants PO1-DK43881 and RO1-DK67133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajash K. Handa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handa, R.K., Evan, A.P. A chronic outcome of shock wave lithotripsy is parenchymal fibrosis. Urol Res 38, 301–305 (2010). https://doi.org/10.1007/s00240-010-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-010-0297-y

Keywords

Navigation