Skip to main content
Log in

The tubular epithelium in the initiation and course of intratubular nephrocalcinosis

  • SYMPOSIUM PAPER
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Intratubular nephrocalcinosis is defined as the histological observation of calcium oxalate and/or calcium phosphate deposits retained within the lumen of the renal tubules. As the tubular epithelium is the primary interaction partner of crystals formed in the tubular fluid, the role of the epithelial cells in nephrocalcinosis has been investigated intensively. This review summarizes our current understanding on how the tubular epithelium mechanistically appears to be involved both in the initiation and in the course of nephrocalcinosis, with emphasis on in vivo observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gwinner W, Suppa S, Mengel M, Hoy L, Kreipe HH, Haller H, Schwarz A (2005) Early calcification of renal allografts detected by protocol biopsies: causes and clinical implications. Am J Transplant 8:1934–1941

    Article  Google Scholar 

  2. Katz ME, Karlowicz MG, Adelman RD, Werner AL, Solhaug MJ (1994) Nephrocalcinosis in very low birth weight neonates: sonographic patterns, histologic characteristics, and clinical risk factors. J Ultrasound Med 10:777–782

    Google Scholar 

  3. Mole DR, Tomson CR, Mortensen N, Winearls CG (2001) Renal complications of jejuno-ileal bypass for obesity. QJM 2:69–77

    Article  Google Scholar 

  4. Evan AP, Lingeman JE, Coe FL, Shao Y, Parks JH, Bledsoe SB, Phillips CL, Bonsib S, Worcester EM, Sommer AJ, Kim SC, Tinmouth WW, Grynpas M (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 2:576–591

    Article  Google Scholar 

  5. Evan AE, Lingeman JE, Coe FL, Miller NL, Bledsoe SB, Sommer AJ, Williams JC, Shao Y, Worcester EM (2008) Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney Int 2:223–229

    Article  CAS  Google Scholar 

  6. Kok DJ (1996) Crystallization and stone formation inside the nephron. Scanning Microsc 2:471–484

    Google Scholar 

  7. Asplin JR, Parks JH, Coe FL (1997) Dependence of upper limit of metastability on supersaturation in nephrolithiasis. Kidney Int 6:1602–1608

    Article  Google Scholar 

  8. Kok DJ (1997) Intratubular crystallization events. World J Urol 4:219–228

    Article  Google Scholar 

  9. Tiselius HG (1997) Estimated levels of supersaturation with calcium phosphate and calcium oxalate in the distal tubule. Urol Res 2:153–159

    Article  Google Scholar 

  10. Parks JH, Coe FL, Evan AP, Worcester EM (2009) Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrol Dial Transplant 1:130–136

    Google Scholar 

  11. Evan AP (2009) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol

  12. Tiselius HG, Hojgaard I (1999) Some aspects of the intratubular precipitation of calcium salts. J Am Soc Nephrol:S371–S375

  13. Coe FL, Parks JH, Evan A, Worcester EM (2007) Pathogenesis and treatment of nephrolithiasis. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s the kidney, 4th edn. Academic Press, Burlington, pp 197–1945

    Google Scholar 

  14. Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timmermans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG (2009) The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J Am Soc Nephrol 8:1705–1713

    Article  CAS  Google Scholar 

  15. Sayer JA, Carr G, Simmons NL (2004) Nephrocalcinosis: molecular insights into calcium precipitation within the kidney. Clin Sci (Lond) 6:549–561

    Article  Google Scholar 

  16. Unuma K, Tojo A, Harada K, Saka K, Nakajima M, Ishii T, Fujita T, Yoshida K (2009) Autopsy report on pseudo-Bartter syndrome with renal calcification induced by diuretics and diet pills. BMJ Case Rep. doi:10.1136/bcr.12.2008.1380

  17. Devuyst O, Pirson Y (2007) Genetics of hypercalciuric stone forming diseases. Kidney Int 9:1065–1072

    Article  CAS  Google Scholar 

  18. Evan AP, Lingeman J, Coe F, Shao Y, Miller N, Matlaga B, Phillips C, Sommer A, Worcester E (2007) Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int 8:795–801

    Article  Google Scholar 

  19. Wagner CA, Geibel JP (2002) Acid–base transport in the collecting duct. J Nephrol:S112–S127

  20. Lee CT, Chen HC, Lai LW, Yong KC, Lien YH (2007) Effects of furosemide on renal calcium handling. Am J Physiol Renal Physiol 4:F1231–F1237

    Article  CAS  Google Scholar 

  21. Bobrowski AE, Langman CB (2008) The primary hyperoxalurias. Semin Nephrol 2:152–162

    Article  CAS  Google Scholar 

  22. Robertson WG, Peacock M, Nordin BE (1969) Calcium crystalluria in recurrent renal-stone formers. Lancet 294(7610):21–24

    Article  Google Scholar 

  23. Elliot JS, Rabinowitz IN (1980) Calcium oxalate crystalluria: crystal size in urine. J Urol 3:324–327

    Google Scholar 

  24. Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 6:442–448

    Google Scholar 

  25. Markowitz GS, Nasr SH, Klein P, Anderson H, Stack JI, Alterman L, Price B, Radhakrishnan J, D’Agati VD (2004) Renal failure due to acute nephrocalcinosis following oral sodium phosphate bowel cleansing. Hum Pathol 6:675–684

    Article  Google Scholar 

  26. Verhulst A, Asselman M, De Naeyer S, Vervaet BA, Mengel M, Gwinner W, D’Haese PC, Verkoelen CF, De Broe ME (2005) Preconditioning of the distal tubular epithelium of the human kidney precedes nephrocalcinosis. Kidney Int 4:1643–1647

    Article  Google Scholar 

  27. Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 1:226–230

    Google Scholar 

  28. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR (2003) The natural history of chronic allograft nephropathy. N Engl J Med 24:2326–2333

    Article  Google Scholar 

  29. Schell-Feith EA, Kist-Van Holthe JE, Conneman N, van Zwieten PH, Holscher HC, Zonderland HM, Brand R, van der Heijden BJ (2000) Etiology of nephrocalcinosis in preterm neonates: association of nutritional intake and urinary parameters. Kidney Int 5:2102–2110

    Article  Google Scholar 

  30. Schwarz A, Mengel M, Gwinner W, Radermacher J, Hiss M, Kreipe H, Haller H (2005) Risk factors for chronic allograft nephropathy after renal transplantation: a protocol biopsy study. Kidney Int 1:341–348

    Article  Google Scholar 

  31. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 3:847–854

    Article  Google Scholar 

  32. Robertson WG (2004) Kidney models of calcium oxalate stone formation. Nephron Physiol 2:21–30

    Article  Google Scholar 

  33. Huggins CB (1933) Bone and calculi in the collecting tubules of the kidney. Arch Surg 1:203–215

    Google Scholar 

  34. De Albuquerque PF, De Paola D (1959) Experiments in urolithiasis: I. Histochemical studies. J Urol:345–350

  35. Haggitt RC, Pitcock JA (1971) Renal medullary calcifications: a light and electron microscopic study. J Urol 3:342–347

    Google Scholar 

  36. King JS Jr (1967) Etiologic factors involved in urolithiasis: a review of recent research. J Urol 4:583–591

    Google Scholar 

  37. Oliver J, MacDowell M, Whang R, Welt LG (1966) The renal lesions of electrolyte imbalance. IV. The intranephronic calculosis of experimental magnesium depletion. J Exp Med 2:263–278

    Article  Google Scholar 

  38. Morgenroth K Jr, Backmann R, Blaschke R (1968) On the forms of calcium oxalate deposits in the human kidney in oxalosis. Beitr Pathol Anat 4:454–463

    Google Scholar 

  39. Khan SR, Finlayson B, Hackett RL (1979) Histologic study of the early events in oxalate induced intranephronic calculosis. Invest Urol 3:199–202

    Google Scholar 

  40. Dykstra MJ, Hackett RL (1979) Ultrastructural events in early calcium oxalate crystal formation in rats. Kidney Int 6:640–650

    Article  Google Scholar 

  41. Sarica K, Erbagci A, Yagci F, Bakir K, Erturhan S, Ucak R (2004) Limitation of apoptotic changes in renal tubular cell injury induced by hyperoxaluria. Urol Res 4:271–277

    Article  CAS  Google Scholar 

  42. Asselman M, Verhulst A, De Broe ME, Verkoelen CF (2003) Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J Am Soc Nephrol 12:3155–3166

    Article  CAS  Google Scholar 

  43. Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1998) Calcium oxalate crystal attachment to cultured kidney epithelial cell lines. J Urol 4:1528–1532

    Google Scholar 

  44. Riese RJ, Mandel NS, Wiessner JH, Mandel GS, Becker CG, Kleinman JG (1992) Cell polarity and calcium oxalate crystal adherence to cultured collecting duct cells. Am J Physiol (2 Pt 2):F177–F184

  45. Verkoelen CF, van der Boom BG, Houtsmuller AB, Schroder FH, Romijn JC (1998) Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am J Physiol (5 Pt 2):F958–F965

  46. Verhulst A, Asselman M, Persy VP, Schepers MS, Helbert MF, Verkoelen CF, De Broe ME (2003) Crystal retention capacity of cells in the human nephron: involvement of CD44 and its ligands hyaluronic acid and osteopontin in the transition of a crystal binding- into a nonadherent epithelium. J Am Soc Nephrol 1:107–115

    Article  CAS  Google Scholar 

  47. Kleinman JG, Sorokina EA, Wesson JA (2010) Induction of apoptosis with cisplatin enhances calcium oxalate crystal adherence to inner medullary collecting duct cells. Urol Res

  48. Verkoelen CF, van der Boom BG, Kok DJ, Houtsmuller AB, Visser P, Schroder FH, Romijn JC (1999) Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int 4:1426–1433

    Article  Google Scholar 

  49. Verkoelen CF, van der Boom BG, Romijn JC (2000) Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney Int 3:1045–1054

    Article  Google Scholar 

  50. Asselman M, Verhulst A, Van Ballegooijen ES, Bangma CH, Verkoelen CF, De Broe ME (2005) Hyaluronan is apically secreted and expressed by proliferating or regenerating renal tubular cells. Kidney Int 1:71–83

    Article  Google Scholar 

  51. Sorokina EA, Wesson JA, Kleinman JG (2004) An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells. J Am Soc Nephrol 8:2057–2065

    Article  CAS  Google Scholar 

  52. Bigelow MW, Wiessner JH, Kleinman JG, Mandel NS (1997) Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol (1 Pt 2):F55–F62

  53. Lieske JC, Leonard R, Swift H, Toback FG (1996) Adhesion of calcium oxalate monohydrate crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol (1 Pt 2):F192–F199

  54. Lieske JC, Norris R, Toback FG (1997) Adhesion of hydroxyapatite crystals to anionic sites on the surface of renal epithelial cells. Am J Physiol (2 Pt 2):F224–F233

  55. Wiessner JH, Hasegawa AT, Hung LY, Mandel GS, Mandel NS (2001) Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells. Kidney Int 2:637–644

    Article  Google Scholar 

  56. Kohri K, Kodama M, Ishikawa Y, Katayama Y, Matsuda H, Imanishi M, Takada M, Katoh Y, Kataoka K, Akiyama T (1991) Immunofluorescent study on the interaction between collagen and calcium oxalate crystals in the renal tubules. Eur Urol 3:249–252

    Google Scholar 

  57. Yamate T, Kohri K, Umekawa T, Amasaki N, Amasaki N, Isikawa Y, Iguchi M, Kurita T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells. Eur Urol 3:388–393

    Google Scholar 

  58. Yamate T, Kohri K, Umekawa T, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin-Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 2:81–86

    Article  Google Scholar 

  59. Yamate T, Kohri K, Umekawa T, Iguchi M, Kurita T (1998) Osteopontin antisense oligonucleotide inhibits adhesion of calcium oxalate crystals in Madin-Darby canine kidney cell. J Urol 4:1506–1512

    Google Scholar 

  60. Kumar V, Farell G, Deganello S, Lieske JC (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 2:289–297

    Article  Google Scholar 

  61. Carr G, Simmons NL, Sayer JA (2006) Disruption of clc-5 leads to a redistribution of annexin A2 and promotes calcium crystal agglomeration in collecting duct epithelial cells. Cell Mol Life Sci 3:367–377

    Article  CAS  Google Scholar 

  62. Sorokina EA, Kleinman JG (1999) Cloning and preliminary characterization of a calcium-binding protein closely related to nucleolin on the apical surface of inner medullary collecting duct cells. J Biol Chem 39:27491–27496

    Article  Google Scholar 

  63. Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol (4 Pt 2):F604–F612

  64. Aihara K, Byer KJ, Khan SR (2003) Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 4:1283–1291

    Article  Google Scholar 

  65. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 1:3–9

    Google Scholar 

  66. Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 1:105–112

    Article  Google Scholar 

  67. Umekawa T, Chegini N, Khan SR (2003) Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol Dial Transplant 4:664–669

    Article  CAS  Google Scholar 

  68. Lieske JC, Walsh-Reitz MM, Toback FG (1992) Calcium oxalate monohydrate crystals are endocytosed by renal epithelial cells and induce proliferation. Am J Physiol (4 Pt 2):F622–F630

  69. Kumar S, Sigmon D, Miller T, Carpenter B, Khan S, Malhotra R, Scheid C, Menon M (1991) A new model of nephrolithiasis involving tubular dysfunction/injury. J Urol 5:1384–1389

    Google Scholar 

  70. Xue YQ, He DL, Chen XF, Li X, Zeng J, Wang XY (2009) Shock wave induced kidney injury promotes calcium oxalate deposition. J Urol 2:762–765

    Article  CAS  Google Scholar 

  71. Khan SR (2005) Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 5:349–357

    Article  CAS  Google Scholar 

  72. Baud L, Ardaillou R (1986) Reactive oxygen species: production and role in the kidney. Am J Physiol (5 Pt 2):F765–F776

  73. Baud L, Ardaillou R (1993) Involvement of reactive oxygen species in kidney damage. Br Med Bull 3:621–629

    Google Scholar 

  74. Andreoli SP (1991) Reactive oxygen molecules, oxidant injury and renal disease. Pediatr Nephrol 6:733–742

    Article  Google Scholar 

  75. Abid MR, Razzaque MS, Taguchi T (2005) Oxidant stress in renal pathophysiology. Contrib Nephrol:135–153

  76. Huang HS, Chen J, Chen CF, Ma MC (2006) Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int 4:699–710

    Article  CAS  Google Scholar 

  77. Thamilselvan S, Menon M (2005) Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int 1:117–126

    Article  CAS  Google Scholar 

  78. Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, Bohm M, Nickenig G (2002) Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2:300–305

    Article  Google Scholar 

  79. Itoh Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K (2005) Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol 1:271–275

    Article  Google Scholar 

  80. Toblli JE, Ferder L, Stella I, De Cavanaugh EM, Angerosa M, Inserra F (2002) Effects of angiotensin II subtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by hyperoxaluria. J Urol (4 Pt 1):1550–1555

  81. Toblli JE, Ferder L, Stella I, Angerosa M, Inserra F (2001) Protective role of enalapril for chronic tubulointerstitial lesions of hyperoxaluria. J Urol 1:275–280

    Google Scholar 

  82. Antus B, Exton MS, Rosivall L (2001) Angiotensin II: a regulator of inflammation during renal disease? Int J Immunopathol Pharmacol 1:25–30

    Google Scholar 

  83. Li CY, Deng YL, Sun BH (2009) Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis. Urol Res 4:211–220

    Article  CAS  Google Scholar 

  84. Vervaet BA, D’Haese PC, De Broe ME, Verhulst A (2009) Crystalluric and tubular epithelial parameters during the onset of intratubular nephrocalcinosis: illustration of the ‘fixed particle’ theory in vivo. Nephrol Dial Transplant 12:3659–3668

    Article  CAS  Google Scholar 

  85. Schepers MS, Van Ballegooijen ES, Bangma CH, Verkoelen CF (2005) Crystals cause acute necrotic cell death in renal proximal tubule cells, but not in collecting tubule cells. Kidney Int 4:1543–1553

    Article  Google Scholar 

  86. Escobar C, Byer KJ, Khaskheli H, Khan SR (2008) Apatite induced renal epithelial injury: insight into the pathogenesis of kidney stones. J Urol 1:379–387

    Article  CAS  Google Scholar 

  87. Umekawa T, Iguchi M, Uemura H, Khan SR (2006) Oxalate ions and calcium oxalate crystal-induced up-regulation of osteopontin and monocyte chemoattractant protein-1 in renal fibroblasts. BJU Int 3:656–660

    Article  CAS  Google Scholar 

  88. Saarela T, Vaarala A, Lanning P, Koivisto M (1999) Incidence, ultrasonic patterns and resolution of nephrocalcinosis in very low birthweight infants. Acta Paediatr 6:655–660

    Article  Google Scholar 

  89. Auron A, Alon US (2005) Resolution of medullary nephrocalcinosis in children with metabolic bone disorders. Pediatr Nephrol 8:1143–1145

    Article  Google Scholar 

  90. Dhar NB, Grundfest S, Jones JS, Streem SB (2005) Jejunoileal bypass reversal: effect on renal function, metabolic parameters and stone formation. J Urol 5:1844–1846

    Article  Google Scholar 

  91. De Bruijn WC, Boeve ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schroder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 1:103–114

    Google Scholar 

  92. Vervaet BA, Verhulst A, Dauwe SE, De Broe ME, D’Haese PC (2009) An active renal crystal clearance mechanism in rat and man. Kidney Int 1:41–51

    Article  CAS  Google Scholar 

  93. Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 5:1291–1301

    Article  Google Scholar 

  94. Lieske JC, Swift H, Martin T, Patterson B, Toback FG (1994) Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci USA 15:6987–6991

    Article  Google Scholar 

  95. Schepers MS, Duim RA, Asselman M, Romijn JC, Schroder FH, Verkoelen CF (2003) Internalization of calcium oxalate crystals by renal tubular cells: a nephron segment-specific process? Kidney Int 2:493–500

    Article  Google Scholar 

  96. Grover PK, Thurgood LA, Fleming DE, van Bronswijk W, Wang T, Ryall RL (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 2:F355–F361

    Google Scholar 

  97. Evan AP, Coe FL, Lingeman JE, Shao Y, Matlaga BR, Kim SC, Bledsoe SB, Sommer AJ, Grynpas M, Phillips CL, Worcester EM (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 12:2227–2235

    Article  CAS  Google Scholar 

  98. Persy V, Postnov A, Neven E, Dams G, De Broe M, D’Haese P, De Clerck N (2006) High-resolution X-ray microtomography is a sensitive method to detect vascular calcification in living rats with chronic renal failure. Arterioscler Thromb Vasc Biol 9:2110–2116

    Article  CAS  Google Scholar 

  99. Brown CA, Jeong KS, Poppenga RH, Puschner B, Miller DM, Ellis AE, Kang KI, Sum S, Cistola AM, Brown SA (2007) Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J Vet Diagn Invest 5:525–531

    Google Scholar 

  100. de Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schroder FH, Kok DJ (2000) Role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 3:615–625

    Google Scholar 

  101. de Water R, Noordermeer C, van der Kwast TH, Nizze H, Boeve ER, Kok DJ, Schroder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 4:761–771

    Google Scholar 

  102. Okada A, Nomura S, Higashibata Y, Hirose M, Gao B, Yoshimura M, Itoh Y, Yasui T, Tozawa K, Kohri K (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 2:89–99

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. D’Haese.

Additional information

Proceedings paper from the third international urolithiasis research symposium, Indianapolis, Indiana, USA, 3–4 December 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vervaet, B.A., Verhulst, A., De Broe, M.E. et al. The tubular epithelium in the initiation and course of intratubular nephrocalcinosis. Urol Res 38, 249–256 (2010). https://doi.org/10.1007/s00240-010-0290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-010-0290-5

Keywords

Navigation