Skip to main content
Log in

Mineralogical signatures of stone formation mechanisms

  • SYMPOSIUM PAPER
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

The mechanisms involved in biomineralization are modulated through interactions with organic matrix. In the case of stone formation, the role of the organic macromolecules in the complex urinary environment is not clear, but the presence of mineralogical ‘signatures’ suggests that some aspects of stone formation may result from a non-classical crystallization process that is induced by acidic proteins. An amorphous precursor has been detected in many biologically controlled mineralization reactions, which is thought to be regulated by non-specific interactions between soluble acidic proteins and mineral ions. Using in vitro model systems, we find that a liquid-phase amorphous mineral precursor induced by acidic polypeptides can lead to crystal textures that resemble those found in Randall’s plaque and kidney stones. This polymer-induced liquid-precursor process leads to agglomerates of coalesced mineral spherules, dense-packed spherulites with concentric laminations, mineral coatings and ‘cements’, and collagen-associated mineralization. Through the use of in vitro model systems, the mechanisms involved in the formation of these crystallographic features may be resolved, enhancing our understanding of the potential role(s) that proteins play in stone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PILP:

Polymer-induced liquid-precursor

CaCO3 :

Calcium carbonate

CaP:

Calcium phosphate

CaOx:

Calcium oxalate

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

POM:

Polarized optical microscopy

References

  1. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450–1482

    Google Scholar 

  2. Grases F, Isern B, Perello J, Costa-Bauza A (2004) The role of glycoproteins in calcium oxalate crystal development. BJU Int 94:177–181

    Article  CAS  PubMed  Google Scholar 

  3. Beshensky AM, Wesson JA, Worcester EM, Sorokina EJ, Snyder CJ, Kleinman JG (2001) Effects of urinary macromolecules on hydroxyapatite crystal formation. J Am Soc Nephrol 12:2108–2116

    CAS  PubMed  Google Scholar 

  4. Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Fluid Electrolyte Physiol 293:F1935–F1943

    Article  CAS  PubMed  Google Scholar 

  5. Atmani F, Khan SR (1999) Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J Am Soc Nephrol 10:S385–S388

    CAS  PubMed  Google Scholar 

  6. George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 108:4670–4693

    Article  CAS  PubMed  Google Scholar 

  7. Tsortos A, Nancollas GH (2002) The role of polycarboxylic acids in calcium phosphate mineralization. J Colloid Interface Sci 250:159–167

    Article  CAS  PubMed  Google Scholar 

  8. Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2009) Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy. Calcif Tissue Int 84:462–473

    Google Scholar 

  9. Qiu SR, Wierzbicki A, Orme CA, Cody AM, Hoyer JR, Nancollas GH, Zepeda S, Yoreo JJD (2004) Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci 101(7):1811–1815

    Google Scholar 

  10. Akyol E, O¨ner M (2007) Inhibition of calcium oxalate monohydrate crystal growth using polyelectrolytes. J Cryst Growth 307:137–144

    Article  CAS  Google Scholar 

  11. Langdon A, Wignall GR, Rogers K, Sorensen ES, Denstedt J, Grohe B, Goldberg HA, Hunter GK (2009) Kinetics of calcium oxalate crystal growth in the presence of osteopontin isoforms: an analysis by scanning confocal interference microcopy. Calcif Tissue Int 84:240–248

    Google Scholar 

  12. Sheng XX, Jung TS, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci USA 102:267–272

    Article  CAS  PubMed  Google Scholar 

  13. Wesson JA, Ward MD (2007) Pathological biomineralization of kidney stones. Elements 3:415–421

    Article  CAS  Google Scholar 

  14. Konya E, Umekawa T, Iguchi M, Kurita T (2003) The role of osteopontin on calcium oxalate crystal formation. Eur Urol 43:564–571

    Article  CAS  PubMed  Google Scholar 

  15. Weiner S, Addadi L (1991) Acidic macromolecules of mineralized tissues: the controllers of crystal formation. Trends Biochem Sci 16(7):252–256

    Google Scholar 

  16. Marsh ME (1989) Binding of calcium and phosphate ions to dentin phosphophoryn. Biochemistry 28:346–352

    Article  CAS  PubMed  Google Scholar 

  17. Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J (2002) Osteopontin—a molecule for all seasons. QJM 95:3–13

    Google Scholar 

  18. Arias JL, Neira-Carrillo An, Arias JI, Escobar C, Bodero M, David M, Fernández MaS (2004) Sulfated polymers in biological mineralization: a plausible source for bio-inspired engineering J Mater Chem 14:2154–2160

  19. Marsh ME (1994) Polyanion mediated mineralisation-assembly and reorganisation of acidic polysaccharides in the Golgi system of a coccolithophorid alga during mineral deposition. Protoplasma 177:108–122

    Article  CAS  Google Scholar 

  20. Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108:4551–4627

    Google Scholar 

  21. Khan SR, Hackett RL (1987) Urolithogenesis of mixed foreign-body stones. J Urol 138:1321–1328

    CAS  PubMed  Google Scholar 

  22. Daudon M, Jungers P, Bazin D (2008) Stone morphology: implication for pathogenesis. American Institute of Physics, pp 199–215

  23. Khan SR, Glenton PA (1994) Association between calcium oxalate and calcium phosphate crystals in nephrolithiasis. J Urol 151:425A

    Google Scholar 

  24. Khan SR (1997) Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 157:376–383

    Article  CAS  PubMed  Google Scholar 

  25. Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25(5):831–841

    Google Scholar 

  26. Politi Y, Mahamid J, Goldberg H, Weiner S, Addadi L (2007) Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization. CrystEngComm 9(12):1171–1177

    Google Scholar 

  27. Heiss A, DuChesne A, Denecke B, Grotzinger J, Yamamoto K, Renne T, Jahnen-Dechent W (2003) Structural basis of calcification inhibition by alpha(2)-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J Biol Chem 278:13333–13341

    Article  CAS  PubMed  Google Scholar 

  28. Raz S, Hamilton PC, Wilt FH, Weiner S, Addadi L (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv Funct Mater 13:480–486

    Article  CAS  Google Scholar 

  29. Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8(3):222–226

    Google Scholar 

  30. Kwak SY, Wiedemann-Bidlack FB, Beniash E, Yamakoshi Y, Simmer JP, Litman A, Margolis HC (2009) Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. J Biol Chem 284:18972–18979

    Article  CAS  PubMed  Google Scholar 

  31. Ostwald W (1897) Studien uber die Bildung und Umwandlung fester Korper. Z Phys Chem 22:289–330

    Google Scholar 

  32. Wang L, Nancollas GH (2009) Pathways to biomineralization and biodemineralization of calcium phosphates: the thermodynamic and kinetic controls. Dalton Trans 15:2665–2672

    Google Scholar 

  33. Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond B 264:461–465

    Article  CAS  Google Scholar 

  34. Aizenberg J, Weiner S, Addadi L (2003) Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connect Tissue Res 44:20–25

    CAS  PubMed  Google Scholar 

  35. Ma Y, Weiner S, Addadi L (2007) Mineral deposition and crystal growth in the continuously forming teeth of sea urchins. Adv Funct Mater 17:2693–2700

    Article  CAS  Google Scholar 

  36. Nudelman F, Chen HH, Goldberg HA, Weiner S, Addadi L (2007) Spiers memorial lecture: lessons from biomineralization: comparing the growth strategies of mollusc shell prismatic and nacreous layers in Atrina rigida. Faraday Discuss 136:9–25

    Google Scholar 

  37. Nassif N, Pinna N, Gehrke N, Antonietti M, Jager C, Cölfen H (2005) Amorphous layer around aragonite platelets in nacre. Proc Natl Acad Sci USA 102:12653–12655

    Article  CAS  PubMed  Google Scholar 

  38. Mahamid J, Sharir A, Addadi L, Weiner S (2008) Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc Natl Acad Sci USA 105:12748–12753

    Google Scholar 

  39. Beniash E, Metzler RA, Lam RSK, Gilbert P (2009) Transient amorphous calcium phosphate in forming enamel. J Struct Biol 166:133–143

    Article  CAS  PubMed  Google Scholar 

  40. Weiner S, Sagi I, Addadi L (2005) Choosing the crystallization path less traveled. Science 309:1027–1028

    Article  CAS  PubMed  Google Scholar 

  41. Weiner S (2006) Transient precursor strategy in mineral formation of bone. Bone 39:431–433

    Article  CAS  PubMed  Google Scholar 

  42. Dai L, Douglas EP, Gower LB (2008) Compositional analysis of a polymer-induced liquid-precursor (PILP) amorphous CaCO3 phase. J Non-Cryst Solids 354:1845–1854

    Article  CAS  Google Scholar 

  43. Gower LB, Odom DJ (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J Crystal Growth 210(4):719–734

    Google Scholar 

  44. DiMasi E, Liu T, Olszta MJ, Gower LB (2005) Laser light scattering studies of a polymer-induced liquid-precursor (PILP) process for mineralization. In: Sandhage KH, Yang S, Douglas T, Parker AR, DiMasi E (eds) Biological and bio-inspired materials and devices. Materials Research Society proceedings, Warrendale, PA, pp K10.16.11–K10.16.17

  45. Gower LA, Tirrell DA (1998) Calcium carbonate films and helices grown in solutions of poly(aspartate). J Crystal Growth 191(1-2):153–160

    Google Scholar 

  46. Kim Y-Y, Gower LB (2007) Patterning inorganic (CaCO3) thin films via a polymer-induced-liquid-precursor (PILP) process. Langmuir 23(9):4862–4870

    Google Scholar 

  47. Amos FF, Dai L, Kumar R, Khan SR, Gower LB (2009) Mechanism of formation of concentrically laminated spherules: implication to Randall’s plaque and stone formation. Urol Res 37(1):11–17

    Google Scholar 

  48. Amos FF (2005) Template-assisted mineral formation via an amorphous liquid phase precursor route. University of Florida, 257 pp

  49. Jee SS, Culver L, Li Y, Douglas EP, Gower LB (2010) Biomimetic mineralization of collagen via an enzyme-aided PILP process. J Cryst Growth 312:1249–1256

    Article  CAS  Google Scholar 

  50. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58:77–116

    Article  Google Scholar 

  51. Olszta MJ, Douglas EP, Gower LB (2003) Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif Tissue Int 72:583–591

    Article  CAS  PubMed  Google Scholar 

  52. Olszta MJ, Odom DJ, Douglas EP, Gower LB (2003) A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res 44:326–334

    Google Scholar 

  53. Olszta MJ (2004) A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor process. University of Florida, 146 pp

  54. Dai L, Cheng X, Gower LB (2008) Transition bars during transformation of an amorphous calcium carbonate precursor. Chem Mater 20(22):6917–6928

    Google Scholar 

  55. Amos FF, Olszta MJ, Khan SR, Gower LB (2006) Relevance of a polymer-induced liquid-precursor (PILP) mineralization process to normal and pathological biomineralization. In: Königsberger E, Königsberger L (eds) Biomineralization—medical aspects of solubility. Wiley, West Sussex, pp 125–217

    Chapter  Google Scholar 

  56. Khan SR, Finlayson B, Hackett RL (1983) Experimental induction of crystalluria in rats using mini-osmotic pumps. Urol Res 11:199–205

    Article  CAS  PubMed  Google Scholar 

  57. Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB, Shao YZ, Sommer AJ, Paterson RF, Kuo RL, Grynpas M (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607–616

    CAS  PubMed  Google Scholar 

  58. Evan A, Lingeman J, Coe FL, Worcester E (2006) Randall’s plaque: pathogenesis and role in calcium oxalate nephrolithiasis. Kidney Int 69:1313–1318

    Article  CAS  PubMed  Google Scholar 

  59. Evan AP, Coe F, Lingeman JE (2007) Response to ‘Randall’s plaque and cell injury’. Kidney Int 71:83–84

    Article  Google Scholar 

  60. Matlaga BR, Coe FL, Evan AP, Lingeman JE (2007) The role of Randall’s plaques in the pathogenesis of calcium stones. J Urol 177:31–38

    Article  PubMed  Google Scholar 

  61. Evan AP (2006) Histopathology predicts the mechanism of stone formation. American Institute of Physics, pp 15–25

  62. Randall A (1940) The etiology of primary renal calculus. Int Abst Surg 71:209–240

    Google Scholar 

  63. Dai L, Cheng X, Gower LB (2008) Transition bars during transformation of an amorphous calcium carbonate precursor. Chem Mat 20:6917–6928

    Article  CAS  Google Scholar 

  64. Ryall RL (2008) The future of stone research: rummagings in the attic, Randall’s plaque, nanobacteria, and lessons from phylogeny. Urol Res 36(2):77–97

    Google Scholar 

  65. Evan AP, Coe FL, Lingeman JE, Shao Y, Sommer AJ, Bledsoe SB, Anderson JC, Worcester EM (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec Adv Integr Anat Evol Biol 290:1315–1323

    Google Scholar 

  66. Sethmann I, Putnis A, Grassmann O, Lobmann P (2005) Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: a close match for biomineralization. Am Mineral 90:1213–1217

    Article  CAS  Google Scholar 

  67. Sethmann I, Hinrichs R, Wörheide G, Putnis A (2006) Nano-cluster composite structure of calcitic sponge spicules—a case study of basic characteristics of biominerals. J Inorg Biochem 100:88–96

    Article  CAS  PubMed  Google Scholar 

  68. Sethmann I, Helbigb U, Wörheide G (2007) Octocoral sclerite ultrastructures and experimental approach to underlying biomineralisation principles. CrystEngComm 9(12):1262–1268

    Google Scholar 

  69. Dauphin Y (2001) Nanostructures of the nacreous layers in recent cephalopod shells. Palaeontologische Zeitschrift 75:113–122

    Google Scholar 

  70. Kirkham J, Brookes SJ, Shore RC, Bonass WA, Smith DA, Wallwork ML, Robinson C (1998) Atomic force microscopy studies of crystal surface topology during enamel development. Connect Tissue Res 38:91–100

    Article  CAS  PubMed  Google Scholar 

  71. Clode PL, Marshall AT (2003) Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220:153–161

    Article  CAS  PubMed  Google Scholar 

  72. Amos FF, Sharbaugh DM, Talham DR, Gower LB, Fricke M, Volkmer D (2007) Formation of single-crystalline aragonite tablets/films via an amorphous precursor. Langmuir 23(4):1988–1994

    Google Scholar 

  73. Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao YZ, Lingeman JE, Worcester EM (2005) Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: Osteopontin localization. Kidney Int 68:145–154

    Article  CAS  PubMed  Google Scholar 

  74. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    Article  CAS  PubMed  Google Scholar 

  75. Addadi L, Moradiam J, Shay E, Maroudas NG, Weiner S (1987) A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc Natl Acad Sci USA 84:2732–2736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported primarily by the National Institutes of Health grant RO1 DE13492—Bioengineering Research Partnership (work by Fairland Amos) although some observations were a result of studies funded by grants from the National Science Foundation DMR-0094209—Relevance of a PILP process to biomineralization, BES-0404000—Nanoscale Interdisciplinary Research Team, and NASA NRA 00-OSS-01-043—Exobiology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie B. Gower.

Additional information

Proceedings paper from the third international urolithiasis research symposium, Indianapolis, IN, USA, December 3–4, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gower, L.B., Amos, F.F. & Khan, S.R. Mineralogical signatures of stone formation mechanisms. Urol Res 38, 281–292 (2010). https://doi.org/10.1007/s00240-010-0288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-010-0288-z

Keywords

Navigation