Skip to main content
Log in

cDNA macroarray analysis of genes in renal epithelial cells exposed to calcium oxalate crystals

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Kidney stone formation is a complex process, and numerous genes participate in this cascade. The binding and internalization of calcium oxalate monohydrate (COM) crystals, the most common crystal in renal stones by renal epithelial cells may be a critical step leading to kidney stone formation. Exposure to COM crystals alters the expression of various genes, but previous studies on gene expression have generally been limited. To obtain more detailed insight into gene expression, we examined gene expression profiles in renal epithelial cells exposed to COM crystals using cDNA macroarray. NRK-52E cells were exposed to COM crystals for 60 and 120 min. Poly (A)+ RNA was isolated and converted into 32P-labeled first-strand cDNA, then the cDNA probe was hybridized to the membrane. Hybridization images were scanned and the signal intensities were quantified. Expression of mRNA of 1,176 genes was analyzed with global sum normalization methods. Exposure to COM crystals altered the expression of some of the genes reported previously. Furthermore, novel genes were also identified. Over 20 genes were found to be regulated at least twofold. We performed a large-scale analysis of gene expression in renal epithelial cells exposed to COM crystals, and identified the genes differentially regulated. cDNA macroarray is a useful tool for evaluating gene expression in urolithiasis research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hammes MS, Lieske JC, Pawar S (1995) Calcium oxalate monohydrate crystals stimulate gene expression in renal epithelial cells. Kidney Int 48:501–509. doi:10.1038/ki.1995.320

    Article  PubMed  CAS  Google Scholar 

  2. Koul H, Kennington L, Honeyman T (1996) Activation of c-myc gene mediates the mitogenic effects of oxalate in LLC-PK1 cells, a line of renal epithelial cells. Kidney Int 50:1525–1530. doi:10.1038/ki.1996.467

    Article  PubMed  CAS  Google Scholar 

  3. Lieske JC, Hammes MS, Hoyer JR (1997) Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals. Kidney Int 51:679–686. doi:10.1038/ki.1997.98

    Article  PubMed  CAS  Google Scholar 

  4. Iida S, Peck AB, Byer KJ (1999) Expression of bikunin mRNA in renal epithelial cells after oxalate exposure. J Urol 162:1480–1486. doi:10.1016/S0022-5347(05)68344-9

    Article  PubMed  CAS  Google Scholar 

  5. Katsuma S, Shiojima S, Hirasawa A (2002) Global analysis of differentially expressed genes during progression of calcium oxalate nephrolithiasis. Biochem Biophys Res Commun 296:544–552. doi:10.1016/S0006-291X(02)00840-9

    Article  PubMed  CAS  Google Scholar 

  6. Chen DH, Kaung HL, Miller CM (2004) Microarray analysis of changes in renal phenotype in the ethylene glycol rat model of urolithiasis: potential and pitfalls. BJU Int 94:637–645. doi:10.1111/j.1464-410X.2004.05016.x

    Article  PubMed  CAS  Google Scholar 

  7. De Largo JE, Todaro GJ (1978) Epithelioid and fibroblastic rat kidney cell clones: epithelial growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J Cell Physiol 94:335–342. doi:10.1002/jcp.1040940311

    Article  Google Scholar 

  8. de Water R, Noordermeer C, van der Kwast TH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771. doi:10.1016/S0272-6386(99)70231-3

    Article  PubMed  Google Scholar 

  9. de Water R, Noordermeer C, Houtsmuller AB (2000) Role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am J Kidney Dis 36:615–625. doi:10.1053/ajkd.2000.16203

    Article  PubMed  Google Scholar 

  10. Ebisuno S, Kohjimoto Y, Tamura M (1995) Adhesion of calcium oxalate crystals to Madin–Darby canine kidney cells and some effects of glycosaminoglycans or cell injuries. Eur Urol 28:68–73

    PubMed  CAS  Google Scholar 

  11. Yasui T, Fujita K, Tozawa K (2001) Calcium oxalate crystal attachment to cultured rat kidney epithelial cell, NRK-52E. Urol Int 67:73–76. doi:10.1159/000050949

    Article  PubMed  CAS  Google Scholar 

  12. Iida S, Peck AB, Byer KJ (1999) Expression of bikunin mRNA in renal epithelial cells after oxalate exposure. J Urol 162:1480–1486. doi:10.1016/S0022-5347(05)68344-9

    Article  PubMed  CAS  Google Scholar 

  13. Kohjimoto Y, Honeyman TW, Jonassen J (2000) Phospholipase A2 mediates immediate early genes in cultured renal epithelial cells: possible role of lysophospholipid. Kidney Int 58:638–646. doi:10.1046/j.1523-1755.2000.00210.x

    Article  PubMed  CAS  Google Scholar 

  14. Koul HK, Menon M, Chaturvedi LS (2002) COM crystals activate the p38 mitogen-activated protein kinase signal transduction pathway in renal epithelial cells. J Biol Chem 277(39):36845–36852. doi:10.1074/jbc.M200832200

    Article  PubMed  CAS  Google Scholar 

  15. Kumar V, Farell G, Lieske JC (2003) Whole urinary proteins coat calcium oxalate monohydrate crystals to greatly decrease their adhesion to renal cells. J Urol 170:221–225. doi:10.1097/01.ju.0000059540.36463.9f

    Article  PubMed  CAS  Google Scholar 

  16. Escobar C, Byer KJ, Khan SR (2007) Naturally produced crystals obtained from kidney stones are less injurious to renal tubular epithelial cells than synthetic crystals. BJU Int 100:891–897. doi:10.1111/j.1464-410X.2007.07002.x

    Article  PubMed  CAS  Google Scholar 

  17. Kohri K, Nomura S, Kitamura Y (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184

    PubMed  CAS  Google Scholar 

  18. Lieske JC, Hammes MS, Hoyer JR (1997) Renal cell osteopontin production is stimulated by calcium oxalate monohydrate crystals. Kidney Int 51:679–686. doi:10.1038/ki.1997.98

    Article  PubMed  CAS  Google Scholar 

  19. Khan SR, Johnson JM, Peck AB (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173–1181. doi:10.1016/S0022-5347(05)64621-6

    Article  PubMed  CAS  Google Scholar 

  20. Tsujihata M, Miyake O, Yoshimura K (2000) Fibronectin as a potent inhibitor of calcium oxalate urolithiasis. J Urol 164:1718–1723. doi:10.1016/S0022-5347(05)67095-4

    Article  PubMed  CAS  Google Scholar 

  21. Marengo SR, Chen DH, Kaung HL (2002) Decreased renal expression of the putative calcium oxalate inhibitor Tamm-Horsfall protein in the ethylene glycol rat model of calcium oxalate urolithiasis. J Urol 167:2192–2197. doi:10.1016/S0022-5347(05)65127-0

    Article  PubMed  CAS  Google Scholar 

  22. Iida S, Peck AB, Johnson-Tardieu J (1999) Temporal changes in mRNA expression for bikunin in the kidneys of rats during calcium oxalate nephrolithiasis. J Am Soc Nephrol 10:986–996

    PubMed  CAS  Google Scholar 

  23. Grover PK, Miyazawa K, Coleman M (2006) Renal prothrombin mRNA is significantly decreased in a hyperoxaluric rat model of nephrolithiasis. J Pathol 210:273–281. doi:10.1002/path.2061

    Article  PubMed  CAS  Google Scholar 

  24. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    PubMed  CAS  Google Scholar 

  25. Bigelow MW, Wiessner JH, Kleinman JG (1997) Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol 272:F55–F62

    PubMed  CAS  Google Scholar 

  26. Kumar V, Farell G, Deganello S (2003) Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol 14:289–297. doi:10.1097/01.ASN.0000046030.24938.0A

    Article  PubMed  CAS  Google Scholar 

  27. Kudo S, Miyamoto G, Kawano K (1999) Proteases involved in the metabolic degradation of human interleukin-1beta by rat kidney lysosomes. J Interferon Cytokine Res 19:361–367. doi:10.1089/107999099314063

    Article  PubMed  CAS  Google Scholar 

  28. Hartz PA, Wilson PD (1997) Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease: abnormalities in synthesis, molecular processing, polarity and secretion. Biochem Mol Med 60:8–26. doi:10.1006/bmme.1996.2542

    Article  PubMed  CAS  Google Scholar 

  29. Chauvet MC, Ryall RL (2005) Intracrystalline proteins and calcium oxalate crystal degradation in MDCK II cells. J Struct Biol 151:12–17

    Article  PubMed  CAS  Google Scholar 

  30. Grover PK, Thurgood LA, Fleming DE (2008) Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells. Am J Physiol Renal Physiol 294:F355–F361. doi:10.1152/ajprenal.00529.2007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in the part by Grant in Aid for Science Research 19591873 from the Ministry of Education, Science, Sport and Culture in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhito Miyazawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazawa, K., Aihara, K., Ikeda, R. et al. cDNA macroarray analysis of genes in renal epithelial cells exposed to calcium oxalate crystals. Urol Res 37, 27–33 (2009). https://doi.org/10.1007/s00240-008-0164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-008-0164-2

Keywords

Navigation