Skip to main content
Log in

Implications of oxidative stress in the pathophysiology of obstructive uropathy

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Although the functional and clinical alterations occurring in patients with obstructive uropathy are not well understood, it has been suggested that oxidative stress could contribute in the mechanism responsible for the impairment of sodium and water balance. This study aimed to test the hypothesis that red wine administration causes an amelioration of both the renal damage and impairment of renal Na+, K+-ATPase activity occurring after ureteral obstruction in the rat. Twenty-four male Wistar adult rats weighting 200–250 g were used. Half of them received a 10-week treatment with wine as the sole fluid source, while the other group received water. Both groups were subjected to 24-h unilateral ureteral obstruction (UUO). Kidney tissue was collected following the relief of the ligature to perform the biochemical assessments. Urine and blood samples were taken at baseline and after the relief. Results show that the treatment with red wine significantly enhances the activity of antioxidant enzymes, and thus reduces renal lipid peroxidation secondary to UUO, which correlated negatively with Na+, K+-ATPase activity. Based on this and other previous data, it could be suggested that red wine administration may prevent renal damage secondary to UUO by inducing enhanced antioxidant potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365(9457):417–430

    PubMed  CAS  Google Scholar 

  2. Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18:689–699

    PubMed  CAS  Google Scholar 

  3. Klahr S, Purkerson ML (1994) The pathophysiology of obstructive nephropathy: the role of vasoactive compounds in the hemodynamic and structural abnormalities of the obstructed kidney. Am J Kidney Dis 23:219–223

    PubMed  CAS  Google Scholar 

  4. Klahr S, Harris K, Purkerson ML (1988) Effects of obstruction on renal functions. Pediatr Nephrol 2(1):34–42. doi:10.1007/BF00870378

    Article  PubMed  CAS  Google Scholar 

  5. Harris RH, Yarger WE (1974) Renal function after release of unilateral ureteral obstruction in rats. Am J Physiol 227(4):806–815

    PubMed  CAS  Google Scholar 

  6. Pedersen TS, Hvistendahl JJ, Djurhuus JC, Frokiaer J (2002) Renal water and sodium handling during gradated unilateral ureter obstruction. Scand J Urol Nephrol 36(3):163–172. doi:10.1080/003655902320131811

    Article  PubMed  CAS  Google Scholar 

  7. Modi KS, Harris KP, Klahr S (1993) Effects of unilateral or bilateral release of bilateral ureteral obstruction on renal function in rat. Nephron 64(2):235–241

    Article  PubMed  CAS  Google Scholar 

  8. Marnett LJ (1999) Chemistry and biology of DNA damage by malondialdehyde. IARC Sci Publ 150:17–27

    PubMed  CAS  Google Scholar 

  9. Ishikawa I, Kiyama S, Yoshioka T (1994) Renal antioxidant enzymes: their regulation and function. Kidney Int 45:1–9. doi:10.1038/ki.1994.1

    Article  Google Scholar 

  10. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128. doi:10.1016/0891-5849(91)90192-6

    Article  PubMed  CAS  Google Scholar 

  11. Brunskill N, Hayes C, Morrissey J, Klahr S (1991) Changes in lipid environment decrease Na+, K+-ATPase activity in obstructive nephropathy. Kidney Int 39(5):843–849. doi:10.1038/ki.1991.106

    Article  PubMed  CAS  Google Scholar 

  12. Rodrigo R, Rivera G (2002) Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine. Free Radic Biol Med 33:409–422. doi:10.1016/S0891-5849(02)00908-5

    Article  PubMed  CAS  Google Scholar 

  13. Klahr S (2001) Urinary tract obstruction. Semin Nephrol 21:133–145. doi:10.1053/snep.2001.20942

    Article  PubMed  CAS  Google Scholar 

  14. Ricardo SD, Diamond JR (1998) The role of macrophages and reactive oxygen species in experimental hydronephrosis. Semin Nephrol 18:612–621

    PubMed  CAS  Google Scholar 

  15. Young M, Young I, Johnston S, Rowlands B (1996) Lipid peroxidation assessment of free radical production following release of obstructive uropathy. J Urol 156:1828–1832. doi:10.1016/S0022-5347(01)65546-0

    Article  PubMed  CAS  Google Scholar 

  16. Ricardo SD, Levinson ME, Dejoseph MR, Diamond JR (1996) Expression of adhesion molecules in rat renal cortex during experimental hydronephrosis. Kidney Int 50:2002–2010. doi:10.1038/ki.1996.522

    Article  PubMed  CAS  Google Scholar 

  17. Hishikawa K, Oemar BS, Yang Z, Luscher TF (1997) Pulsatile stretch stimulates superoxide production and activates nuclear factor-kappa B in human coronary smooth muscle. Circ Res 81:797–803

    PubMed  CAS  Google Scholar 

  18. Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533. doi:10.1126/science.8036496

    Article  PubMed  CAS  Google Scholar 

  19. Yagisawa M, Yuo A, Yonemaru M, Imajoh OS, Kanegasaki S, Yazaki Y, Takaku F (1996) Superoxide release and NADPH oxidase component in mature human phagocytes: correlation between functional capacity and amount of functional proteins. Biochem Biophys Res Commun 228:510–516. doi:10.1006/bbrc.1996.1691

    Article  PubMed  CAS  Google Scholar 

  20. Ohba M, Shibamura M, Kuroki T, Nose K (1994) Production of hydrogen peroxide by transforming growth factor-p1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126:1079–1088. doi:10.1083/jcb.126.4.1079

    Article  PubMed  CAS  Google Scholar 

  21. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–298. doi:10.1126/science.270.5234.296

    Article  PubMed  CAS  Google Scholar 

  22. Modi KS, Morrissey J, Shah SV, Schreiner GF, Klahr S (1990) Effects of probucol on renal function in rats with bilateral ureteral obstruction. Kidney Int 38:843–850. doi:10.1038/ki.1990.280

    Article  PubMed  CAS  Google Scholar 

  23. Kawada N, Moriyama T, Ando A, Fukunaga M, Miyata T, Kurokawa K, Imai E, Hori M (1999) Increased oxidative stress in mouse kidneys with unilateral ureteral obstruction. Kidney Int 56(3):1004–1013. doi:10.1046/j.1523-1755.1999.00612.x

    Article  PubMed  CAS  Google Scholar 

  24. Cvetkovic T, Vlahovic P, Pavlovic D, Kocic G, Jevtovic T, Djordjevic VB (1998) Low catalase activity in rats with ureteral ligation: relation to lipid peroxidation. Exp Nephrol 6:74–77. doi:10.1159/000020507

    Article  PubMed  CAS  Google Scholar 

  25. Rodrigo R, Guichard C, Charles R (2007) Clinical pharmacology and therapeutic use of antioxidant vitamins. Fundam Clin Pharmacol 21(2):111–127. doi:10.1111/j.1472-8206.2006.00466.x

    Article  PubMed  CAS  Google Scholar 

  26. Pietta P, Simonetti P, Gardana C, Brusamolino A, Morazzoni P, Bombardelli E (1998) Relationship between rate and extent of catechin absorption and plasma antioxidant status. Biochem Mol Biol Int 46(5):895–903

    PubMed  CAS  Google Scholar 

  27. McDonald M, Hughes M, Burns J, Lean MEJ, Matthews D, Crozier A (1998) Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J Agric Food Chem 46:368–375. doi:10.1021/jf970677e

    Article  PubMed  CAS  Google Scholar 

  28. Rodrigo R, Rivera G, Orellana M, Araya J, Bosco C (2002) Rat kidney antioxidant response to long-term exposure to flavonol rich red wine. Life Sci 71(24):2881–2895. doi:10.1016/S0024-3205(02)02140-9

    Article  PubMed  CAS  Google Scholar 

  29. Rodrigo R, Rivera G, Castillo R, Guichard C (2005) Chronic ethanol exposure does not impair urinary acidification even under stressful conditions. Med Sci Monit 11(4):BR95–BR99

    PubMed  CAS  Google Scholar 

  30. Muthukumar A, Selvam R (1998) Role of glutathione on renal mitochondrial status in hyperoxaluria. Mol Cell Biochem 185:77–84. doi:10.1023/A:1006817319876

    Article  PubMed  CAS  Google Scholar 

  31. Araya J, Rodrigo R, Orellana M, Rivera G (2001) Red wine raises plasma HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes. Br J Nutr 86:189–195. doi:10.1079/BJN2001369

    Article  PubMed  CAS  Google Scholar 

  32. Rodrigo R, Avalos N, Orellana M, Bosco C, Thielemann L (1999) Renal effects of experimental obstructive jaundice: morphological and functional assessment. Arch Med Res 30(4):275–285. doi:10.1016/S0188-0128(99)00027-5

    Article  PubMed  CAS  Google Scholar 

  33. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi:10.1016/0003-2697(79)90738-3

    Article  PubMed  CAS  Google Scholar 

  34. Nebot C, Moutet M, Huet P (1993) Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem 214:442–451. doi:10.1006/abio.1993.1521

    Article  PubMed  CAS  Google Scholar 

  35. Aebi H (1974) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Academic Press, New York, pp 674–684

    Google Scholar 

  36. Flohe L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121. doi:10.1016/S0076-6879(84)05015-1

    Article  PubMed  CAS  Google Scholar 

  37. Katz AI, Epstein FH (1967) The role of sodium-potassium-activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J Clin Invest 46(12):1999–2011

    PubMed  CAS  Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  39. Thomsen K (1990) Lithium clearance as a measure of sodium and water delivery from the proximal tubules. Kidney Int Suppl 28:S10–S16

    PubMed  CAS  Google Scholar 

  40. Buerkert J, Head M, Klahr S (1977) Effects of acute bilateral ureteral obstruction on deep nephron and terminal collecting duct function in the young rat. J Clin Invest 59:1055–1065. doi:10.1172/JCI108728

    Article  PubMed  CAS  Google Scholar 

  41. Frokiaer J, Christensen BM, Marples D, Djurhuus JC, Jensen UB, Knepper MA, Nielsen S (1997) Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction. Am J Physiol 273:F213–F223

    PubMed  CAS  Google Scholar 

  42. Frokiaer J, Marples D, Knepper MA, Nielsen S (1996) Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney. Am J Physiol 270:F657–F668

    PubMed  CAS  Google Scholar 

  43. Kimura H, Mujais SK (1990) Cortical collecting duct Na-K pump in obstructive nephropathy. Am J Physiol 258:F1320–F1327

    PubMed  CAS  Google Scholar 

  44. Li C, Wang W, Kwon TH, Isikay L, Wen JG, Marples D, Djurhuus JC, Stockwell A, Knepper MA, Nielsen S, Frokiaer J (2001) Downregulation of AQP1-2, and -3 after ureteral obstruction is associated with a long-term urine-concentrating defect. Am J Physiol Renal Physiol 281:F163–F171

    PubMed  CAS  Google Scholar 

  45. Muto S, Asano Y (1994) Electrical properties of the rabbit cortical collecting duct from obstructed kidneys after unilateral ureteral obstruction. Effects of renal decapsulation. J Clin Invest 94:1846–1854. doi:10.1172/JCI117534

    Article  PubMed  CAS  Google Scholar 

  46. Jaenike JR (1972) The renal functional defect of postobstructive nephropathy. The effects of bilateral ureteral obstruction in the rat. J Clin Invest 51:2999–3006. doi:10.1172/JCI107127

    Article  PubMed  CAS  Google Scholar 

  47. McDougal WS, Wright FS (1972) Defect in proximal and distal sodium transport in post-obstructive diuresis. Kidney Int 2:304–317. doi:10.1038/ki.1972.114

    Article  PubMed  CAS  Google Scholar 

  48. Yarger WE, Aynedjian HS, Bank N (1972) A micropuncture study of postobstructive diuresis in the rat. J Clin Invest 51:625–637. doi:10.1172/JCI106852

    Article  PubMed  CAS  Google Scholar 

  49. Li C, Wang W, Knepper MA, Nielsen S, Frokiaer J (2003) Downregulation of renal aquaporins in response to unilateral ureteral obstruction. Am J Physiol Renal Physiol 284:F1066–F1079

    PubMed  CAS  Google Scholar 

  50. Li C, Wang W, Kwon TH, Knepper MA, Nielsen S, Frokiaer J (2003) Altered expression of major renal Na transporters in rats with bilateral ureteral obstruction and release of obstruction. Am J Physiol Renal Physiol 285:F889–F901

    PubMed  CAS  Google Scholar 

  51. Li C, Wang W, Kwon TH, Knepper MA, Nielsen S, Frokiaer J (2003) Altered expression of major renal Na transporters in rats with unilateral ureteral obstruction. Am J Physiol Renal Physiol 284:F155–F166

    PubMed  CAS  Google Scholar 

  52. Stark G (2005) Functional consequences of oxidative membrane damage. J Membr Biol 205:1–16. doi:10.1007/s00232-005-0753-8

    Article  PubMed  CAS  Google Scholar 

  53. Saborio P, Krieg R, Kuemmerle N, Norkus E, Schwartz C, Chan J (2000) Alpha-tocopherol modulates lipoprotein cytotoxicity in obstructive nephropathy. Pediatr Nephrol 14:740–746. doi:10.1007/PL00013428

    Article  PubMed  CAS  Google Scholar 

  54. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density protein. J Clin Invest 77:641–644. doi:10.1172/JCI112349

    Article  PubMed  CAS  Google Scholar 

  55. Kamanna VS, Pai R, Ha H, Kirschenbaum MA, Roh DD (1999) Oxidized low-density lipoprotein stimulates monocyte adhesion to glomerular endothelial cells. Kidney Int 55:2192–2202. doi:10.1046/j.1523-1755.1999.00470.x

    Article  PubMed  CAS  Google Scholar 

  56. Lange-Sperandio B, Forbes MS, Thornhill B, Okusa MD, Linden J, Chevalier RL (2005) A2A adenosine receptor agonist and PDE4 inhibition delays inflammation but fails to reduce injury in experimental obstructive nephropathy. Nephron Exp Nephrol 100(3):e113–e123. doi:10.1159/000085057

    Article  PubMed  CAS  Google Scholar 

  57. Manucha W (2007) Biochemical-molecular markers in unilateral ureteral obstruction. Biocell 31(1):1–12

    PubMed  CAS  Google Scholar 

  58. Romanque P, Uribe M, Videla L (2005) Mecanismos moleculares en el daño por isquemia-reperfusión hepática y en el preacondicionamiento isquémico. Rev Med Chil 133(4):469–476

    Google Scholar 

  59. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499. doi:10.1016/S0891-5849(99)00242-7

    Article  PubMed  CAS  Google Scholar 

  60. Kinter M, Wolstenholme JT, Thornhill BA, Newton EA, McCormick ML, Chevalier RL (1999) Unilateral ureteral obstruction impairs renal antioxidant enzyme activation during sodium depletion. Kidney Int 55:1327–1334. doi:10.1046/j.1523-1755.1999.00358.x

    Article  PubMed  CAS  Google Scholar 

  61. Collard CD, Lekowski R, Jordan JE, Agah A, Stahl GL (1999) Complement activation following oxidative stress. Mol Immunol 36:941–948. doi:10.1016/S0161-5890(99)00116-9

    Article  PubMed  CAS  Google Scholar 

  62. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10. doi:10.1016/0167-5699(94)90018-3

    Article  PubMed  CAS  Google Scholar 

  63. Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J (2001) Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor kappa-B. J Neurochem 78:909–919. doi:10.1046/j.1471-4159.2001.00463.x

    Article  PubMed  CAS  Google Scholar 

  64. Chopp M, Chen H, Ho KL, Dereski MO, Brown E, Hetzel FW, Welch KMA (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat. Neurology 39:1396–1398

    PubMed  CAS  Google Scholar 

  65. Nishio S, Yunoki M, Chen ZF, Anzivino MJ, Lee KS (2000) Ischemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg 93:845–851

    Article  PubMed  CAS  Google Scholar 

  66. Zimmermann C, Ginis I, Furuya K, Klimanis D, Ruetzler C, Spatz M, Hallenbeck JM (2001) Lipopolysaccharide-induced ischemic tolerance is associated with increased levels of ceramide in brain and in plasma. Brain Res 895:59–65. doi:10.1016/S0006-8993(01)02028-5

    Article  PubMed  CAS  Google Scholar 

  67. Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T (2002) Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology 96:907–912. doi:10.1097/00000542-200204000-00018

    Article  PubMed  Google Scholar 

  68. Wada K, Miyazawa T, Nomura N, Tsuzuki N, Nawashiro H, Shima K (2001) Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus. Neurosurgery 49:160–167. doi:10.1097/00006123-200107000-00025

    Article  PubMed  CAS  Google Scholar 

  69. Pelaez LI, Juncos LA, Stulak JM, Lerman LO, Romero JC (2005) Non-invasive evaluation of bilateral renal regional blood flow and tubular dynamics during acute unilateral ureteral obstruction. Nephrol Dial Transplant 20(1):83–88. doi:10.1093/ndt/gfh556

    Article  PubMed  Google Scholar 

  70. Morrissey J, Windus D, Schwav S, Tannenbaum J, Klahr S (1986) Ureteral occlusion decreases phospholipid and cholesterol of renal tubular membranes. Am J Physiol 250:F136–F143

    PubMed  CAS  Google Scholar 

  71. Tannenbaum J, Purkerson ML, Klahr S (1983) Effect of unilateral ureteral obstruction on metabolism of renal lipids in the rat. Am J Physiol 245:F254–F262

    PubMed  CAS  Google Scholar 

  72. Comai K, Farber SJ, Paulsrud JR (1975) Analysis of renal medullary lipid droplets from normal, hydronephrotic and indomethacin treated rabbits. Lipids 10:555–561. doi:10.1007/BF02532360

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the technical assistance of Diego Soto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Rodrigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecher, M., Guichard, C., Velásquez, M.J. et al. Implications of oxidative stress in the pathophysiology of obstructive uropathy. Urol Res 37, 19–26 (2009). https://doi.org/10.1007/s00240-008-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-008-0163-3

Keywords

Navigation