Skip to main content
Log in

Tensile, flexural and compressive strength studies on natural and artificial phosphate urinary stones

  • Symposium Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Mechanical properties of renal calculi dictate how a stone interacts and disintegrates by shock wave or intracorporeal lithotripsy techniques. Renal stones of different compositions have large variation in their mechanical strength and susceptibilities to shock waves. Operated urinary stones and artificially developed stones using pharmaceutical methods, composed of phosphates were subjected to tensile, flexural and compressive strength studies using universal testing machine. The infrared spectra confirmed the presence of hydroxyapatite in both the natural stones and struvite with calcium oxalate trihydrate in one stone and struvite with uric acid in the other. The X-ray diffraction analyses confirmed their crystalline nature. It has been observed that the flexural properties depend on the size of the sample even for the samples cut from a single stone. The compressive strengths were almost 25 times larger than the tensile strengths of the respective natural stones as well as the artificial stones prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Williams JC Jr, Zarse CA, Jackson ME et al (2006) Variability of protein content in calcium oxalate monohydrate stones. J Endourol 20(8):560–564. doi:10.1089/end.2006.20.560

    Article  PubMed  Google Scholar 

  2. Mohamed Ali A, Arunai Nambi Raj N, Kalainathan S et al (2008) Microhardness and acoustic behavior of calcium oxalate monohydrate urinary stone. Mater Lett 62(15):2351–2354. doi:10.1016/j.matlet.2007.11.093

    Article  CAS  Google Scholar 

  3. Grases F, Costa-Bauza A, Garcia-Ferragut L (1998) Biopathological crystallization: a general view about the mechanisms of renal stone formation. Adv Colloid Interface Sci 74:169–194. doi:10.1016/S0001-8686(97)00041-9

    Article  PubMed  CAS  Google Scholar 

  4. Leusmann DB, Niggemann H, Roth S et al (1995) Recurrence rates and severity of urinary calculi. Scand J Urol Nephrol 29(3):279–283

    Article  PubMed  CAS  Google Scholar 

  5. Srinivasan S, Kalaiselvi P, Varalakshmi P (2006) Epitaxial deposition of calcium oxalate on uric acid rich stone matrix is induced by a 29 kDa protein. Clin Chim Acta 364:267–274. doi:10.1016/j.cca.2005.07.010

    Article  PubMed  CAS  Google Scholar 

  6. Xiang-bo Z, Zhi-ping W, Jian-min D et al (2005) New chemolysis for urological calcium phosphate calculi—a study in vitro. BMC Urol 5:9

    Article  PubMed  CAS  Google Scholar 

  7. Chaussy C, Schmiedt E, Jocham D et al (1982) First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol 127:417–420

    PubMed  CAS  Google Scholar 

  8. Mezentsev VA (2005) Extracorporeal shock wave lithotripsy in the treatment of renal pelvicalyceal stones in morbidly obese patients. Int Braz J Urol 31:105–110. doi:10.1590/S1677-55382005000200003

    Article  PubMed  CAS  Google Scholar 

  9. Cohen NP, Whitefield HN (1993) Mechanical testing of urinary calculi. World J Urol 11:13–18. doi:10.1007/BF00182165

    Article  PubMed  CAS  Google Scholar 

  10. Heimbach D, Munver R, Zhong P et al (2000) Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones. J Urol 164:537–544. doi:10.1016/S0022-5347(05)67419-8

    Article  PubMed  CAS  Google Scholar 

  11. Zhong P, Chuong CJ, Preminger GM (1993) Characterization of fracture toughness of renal calculi using a microindentation technique. J Mater Sci Lett 12:1460–1462. doi:10.1007/BF00591608

    Article  Google Scholar 

  12. Heimbach D, Jacobs D, Winter P et al (1997) Dissolution of artificial (natural) stones in a standard model: first results. J Endourol 11(1):63–66

    Article  PubMed  CAS  Google Scholar 

  13. Kerbl K, Rehman J, Landman J et al (2002) Current management of urolithiasis: progress or regress? J Endourol 16(5):281–288. doi:10.1089/089277902760102758

    Article  PubMed  Google Scholar 

  14. Lal B, Bamzai KK, Kotru PN (2002) Mechanical characteristics of melt grown doped KMgF3 crystals. Mater Chem Phys 78:202–207. doi:10.1016/S0254-0584(02)00342-5

    Article  CAS  Google Scholar 

  15. Mohamed Ali A, Arunai Nambi Raj N, Kalainathan S et al (2006) Ultrasonic studies on artificial kidney stone models. J Pure Appl Ultrason 28(2–4):73–80

    Google Scholar 

  16. Coleman AJ, Saunders JE (1993) A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31(2):75–89. doi:10.1016/0041-624X(93)90037-Z

    Article  PubMed  CAS  Google Scholar 

  17. Jan HR, Ladislav P, Daniel KA (2002) Factors of fragment retention after extracorporeal shockwave lithotripsy (ESWL). Br J Urol 28(1):3–9

    Google Scholar 

  18. Zhu S, Cocks FH, Preminger GM et al (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671. doi:10.1016/S0301-5629(02)00506-9

    Article  PubMed  Google Scholar 

  19. Visuri SR, Makarewicz AJ, London RA et al (2002) Laser and Acoustic Lens for Lithotripsy. US Patent 6,491,685 B2

  20. Parr NJ, Pye SD, Tolley DA (1994) Comparison of the performance of two pulsed dye lasers using a synthetic stone model. J Urol 152:1619–1621

    PubMed  CAS  Google Scholar 

  21. Jeremy LG, Diane SN, Eugene PL (1995) Self-reinforced composite poly(methy1methacrylate): static and fatigue properties. Biomoterials 16:1043–1055

    Article  Google Scholar 

  22. Joshi VS, Joshi MJ (2003) FTIR spectroscopic, thermal and growth morphological studies of calcium hydrogen phosphate dihydrate crystals. Cryst Res Technol 38(9):817–821. doi:10.1002/crat.200310100

    Article  CAS  Google Scholar 

  23. Ramachandran E, Natarajan S (2004) Crystal growth of some urinary stone constituents: III. In- vitro crystallization of L-cystine and its characterization. Cryst Res Technol 39(4):308–312. doi:10.1002/crat.200310187

    Article  CAS  Google Scholar 

  24. Hesse A, Schneider HJ, Weitz G et al (1973) Magnesium ammonium phosphate monohydrate—a hitherto undetected constituent of urinary calculi. Int Urol Nephrol 5(1):19–26. doi:10.1007/BF02081748

    Article  PubMed  CAS  Google Scholar 

  25. Wang SJ, Yip MC, Hsu YS et al (2002) The modulus of toughness of urinary calculi. J Biomech Eng 124:133–134. doi:10.1115/1.1431264

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Managements of C. Abdul Hakeem College, Melvisharam and VIT University, Vellore for their encouragement and express their sincere thanks to Prof. Ganesh Gopalakrishnan, Christian Medical College and Hospital, Vellore and Dr. A. Manamalli, Institute of Biochemistry, Madras Medical College, Chennai and the authors also acknowledge University Grants Commission and Department of Science and Technology, Government of India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Arunai Nambi Raj.

Additional information

This article directly relates to material presented at the 11th International Urolithiasis Symposium, Nice, 2–5 September 2008, from which the abstracts were published in the following issue of Urological Research: Urological Research (2008) 36:157–232. doi:10.1007/s00240-008-0145-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed Ali, A., Arunai Nambi Raj, N. Tensile, flexural and compressive strength studies on natural and artificial phosphate urinary stones. Urol Res 36, 289–295 (2008). https://doi.org/10.1007/s00240-008-0158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-008-0158-0

Keywords

Navigation