Skip to main content
Log in

Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Cystine stones are often highly resistant to shock wave lithotripsy (SWL), but it has been reported that cystine stones of “rough” morphology are actually quite susceptible to SWL. Based on the observation that rough cystine stones contain void regions that are visible by helical computed tomographic (CT) imaging, we hypothesized that the internal structure of cystine stones would correlate with the susceptibility of stones to SWL. Cystine stones with average diameters between 4 and 7 mm were scanned using micro and helical CT, classified morphologically according to published criteria, and broken in a research electrohydraulic lithotripter, with fragments sieved through a 2 mm mesh every 50 SWs. Stones with regions of low X-ray attenuation visible on helical CT required only 650 ± 312 SW/g for total comminution, while those that did not show CT-visible internal structure required 1,046 ± 307 SW/g (mean ± SD, < 0.004). In addition, both average and minimum values for CT number (in Hounsfield units, HU) correlated with SW/g to comminution (< 0.003 and < 0.0003, respectively), and these relationships were independent of stone size. This study also confirmed the relationship between the morphological criteria of Bhatta et al. (J Urol 142:937–940, 1989) and cystine stone fragility: Rough stones required 609 ± 244 SW/g (n = 11), smooth stones 1,109 ± 308 SW/g (n = 8), and stones intermediate in morphology 869 ± 384 SW/g (n = 7; rough different from smooth, < 0.005). In conclusion, cystine stones that appeared homogeneous by helical CT required 61% more SWs for comminution than did stones showing regions of low X-ray attenuation. These findings demonstrate the feasibility of using helical CT to identify cystine stones that will be susceptible to SWL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harada M, Ko ZR, Kamidono S (1992) Experience with extracorporeal shock-wave lithotripsy for cystine calculi in 20 renal units. J Endourol 6:213–215

    Article  Google Scholar 

  2. Martin X, Salas M, Labeeuw M, Pozet N, Gelet A, Dubernard JM (1991) Cystine stones: the impact of new treatment. Br J Urol 68:234–239

    PubMed  CAS  Google Scholar 

  3. Kachel TA, Vijan SR, Dretler SP (1991) Endourological experience with cystine calculi and a treatment algorithm. J Urol 145:25–28

    PubMed  CAS  Google Scholar 

  4. Katz G, Shapiro A, Lencovsky Z, Caine M, Pode D (1990) Place of extracorporeal shock-wave lithotripsy (ESWL) in management of cystine calculi. Urology 36:124–128

    Article  PubMed  CAS  Google Scholar 

  5. Hockley NM, Lingeman JE, Hutchinson RN (1989) Relative efficacy of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy in the management of cystine calculi. J Endourol 3:273–285

    Google Scholar 

  6. Singer A, Das A (1989) Cystinuria: a review of the pathophysiology and management. J Urol 142:669–673

    PubMed  CAS  Google Scholar 

  7. Hernandez-Graulau JM, Casteneda-Zuniga W, Hunter D, Hulbert JC (1989) Management of cystine nephrolithiasis by endourologic methods and shock-wave lithotripsy. Urology 34:139–143

    Article  PubMed  CAS  Google Scholar 

  8. Conort P, Leo JP, Richard F, Chatelain C (1989) Cystinic lithiasis and extracorporeal lithotripsy. Ann Urol (Paris) 23:253–254

    CAS  Google Scholar 

  9. Dretler SP (1988) Stone fragility—a new therapeutic distinction. J Urol 139:1124–1127

    PubMed  CAS  Google Scholar 

  10. Newman DM, Lingeman JE, Mertz JH, Mosbaugh PG, Steele RE, Knapp PM Jr (1987) Extracorporeal shock-wave lithotripsy. Urol Clin North Am 14:63–71

    PubMed  CAS  Google Scholar 

  11. Ng CS, Streem SB (2001) Medical and surgical therapy of the cystine stone patient. Curr Opin Urol 11:353–358

    Article  PubMed  CAS  Google Scholar 

  12. Trinchieri A, Montanari E, Zanetti G, Lizzano R (2007) The impact of new technology in the treatment of cystine stones. Urol Res 35:129–132

    Article  PubMed  Google Scholar 

  13. Daudon M, Bader CA, Jungers P (1993) Urinary calculi: review of classification methods and correlations with etiology. Scanning Microsc 7:1081–1106

    PubMed  CAS  Google Scholar 

  14. Bhatta KM, Prien EL Jr, Dretler SP (1989) Cystine calculi––rough and smooth: a new clinical distinction. J Urol 142:937–940

    PubMed  CAS  Google Scholar 

  15. Thibert R, Dubuc B, Dufour M, Tawashi R (1993) Evaluation of the surface roughness of cystine stones using a visible laser diode scattering approach. Scanning Microsc 7:555–560

    PubMed  CAS  Google Scholar 

  16. Miller NL, Lingeman JE (2007) Management of kidney stones. BMJ 334:468–472

    Article  PubMed  Google Scholar 

  17. Kim SC, Hatt EK, Lingeman JE, Nadler RB, McAteer JA, Williams JC Jr (2005) Cystine: helical computerized tomography characterization of rough and smooth calculi in vitro. J Urol 174:1468–1471

    Article  PubMed  Google Scholar 

  18. Zarse CA, McAteer JA, Sommer AJ, Kim SC, Hatt EK, Lingeman JE, Evan AP, Williams JC Jr (2004) Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol 4:15

    Article  PubMed  Google Scholar 

  19. Williams JC Jr, Paterson RF, Kopecky KK, Lingeman JE, McAteer JA (2002) High resolution detection of internal structure of renal calculi by helical computerized tomography. J Urol 167:322–326

    Article  PubMed  Google Scholar 

  20. Saw KC, McAteer JA, Monga AG, Chua GT, Lingeman JE, Williams JC Jr (2000) Helical CT of urinary calculi: effect of stone composition, stone size, and scan collimation. AJR Am J Roentgenol 175:329–332

    PubMed  CAS  Google Scholar 

  21. Cleveland RO, Bailey MR, Fineberg NS, Hartenbaum B, Lokhandwalla M, McAteer JA, Sturtevant B (2000) Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3. Rev Sci Instrum 71:2514–2525

    Article  CAS  Google Scholar 

  22. Zarse CA, Hameed TA, Jackson ME, Pishchalnikov YA, Lingeman JE, McAteer JA, Williams JC Jr (2007) CT visible internal stone structure––but not Hounsfield unit value––of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res 35:201–206

    Article  PubMed  Google Scholar 

  23. McAteer JA, Williams JC Jr, Cleveland RO, Van Cauwelaert J, Bailey MR, Lifshitz DA, Evan AP (2005) Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy. Urol Res 33:429–434

    Article  PubMed  Google Scholar 

  24. Kachelriess M, Sourbelle K, Kalender WA (2006) Empirical cupping correction: a first-order raw data precorrection for cone-beam computed tomography. Med Phys 33:1269–1274

    Article  PubMed  Google Scholar 

  25. Williams JC Jr, Zarse CA, Jackson ME, Lingeman JE, McAteer JA (2007) Using helical CT to predict stone fragility in shock wave lithotripsy (SWL). In: Evan AP, Lingeman JE, Williams JC Jr (eds) Renal stone disease: proceedings of the 1st international urolithiasis research symposium. American Institute of Physics, Melville

  26. Krishnamurthy MS, Ferucci PG, Sankey N, Chandhoke PS (2005) Is stone radiodensity a useful parameter for predicting outcome of extracorporeal shockwave lithotripsy for stones ≤ 2 cm? (Discussion 9) Int Braz J Urol 31:3–8

    Article  PubMed  Google Scholar 

  27. Cleveland RO, Anglade R, Babayan RK (2004) Effect of stone motion on in vitro comminution efficiency of a Storz Modulith SLX. J Endourol 18:629–633

    Article  PubMed  Google Scholar 

  28. Pishchalnikov YA, Neucks JS, VonDerHaar RJ, Pishchalnikova IV, Williams JC Jr, McAteer JA (2006) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 176:2706–2710

    Article  PubMed  Google Scholar 

  29. Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121:1190–1202

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Molly Jackson for help with the stone fragmentation experiments, and to Dr. Robert Nadler and Dr. Edwin Prien for donating cystine stones from their collections. This work was supported by NIH R01 DK59933 and P01 DK43881.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Williams Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.C., Burns, E.K., Lingeman, J.E. et al. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res 35, 319–324 (2007). https://doi.org/10.1007/s00240-007-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-007-0117-1

Keywords

Navigation