Skip to main content

Advertisement

Log in

Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Crystal adherence to the renal epithelium is widely regarded as a probable mechanism of stone formation. Intracrystalline proteins may provide access to the core of urinary crystals and thereby facilitate the dismantling of these crystals after their attachment to and phagocytosis by renal epithelial cells. The present study investigated the role of proteolysis and limited dissolution of urinary calcium oxalate (CaOx) crystals in South Africa’s white and black populations with a view to understanding the remarkably low stone incidence in the black population compared with the whites. CaOx crystals were precipitated from filtered urine or ultrafiltered urine dosed with an intracrystalline protein, urinary prothrombin fragment 1 (UPTF1), isolated from white and black subjects. The crystals were fractured and subjected to proteolysis and/or limited dissolution before examination using field emission scanning electron microscopy (FESEM). FESEM data showed that CaOx crystals from white and black subjects were eroded by treatment with proteases. Cathepsin D caused the most significant crystal erosion, and more noticeable degradation of CaOx monohydrate (COM) crystals compared to CaOx dihydrate (COD). Limited dissolution studies showed the unique ultrastructures and fragmentation processes of COM and COD crystals. COM crystals appeared to be more susceptible to degradation and dissolution than CODs. Since COMs are predominant in blacks, compared with COD crystals from whites, it is speculated that the lower stone rate amongst South African blacks might be attributed partly to their more efficient destruction of retained COM crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lieske JC, Toback FG (1996) Interaction of urinary crystals with renal epithelial cells in the pathogenesis of nephrolithiasis. Semin Nephrol 6: 458

    Google Scholar 

  2. Lieske JC, Deganello S, Toback FG (1999) Cell-crystal interactions and kidney stone formation. Nephron 81: 8

    Article  CAS  PubMed  Google Scholar 

  3. De Water R, Noordermeer C, Van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: Effects of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33: 761

    PubMed  Google Scholar 

  4. De Water R, Leenan PJM, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, Schröder FH (2001) Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis 38: 331

    PubMed  Google Scholar 

  5. Lieske JC, Leonard R, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol 268: F604

    CAS  PubMed  Google Scholar 

  6. Yamate T, Kohri K, Umekawa T (1996) The effect of osteopontin on the adhesion of calcium oxalate crystals to Madin-Darby canine kidney cells. Eur Urol 30: 388

    CAS  PubMed  Google Scholar 

  7. Yamate T, Kohri K, Konya E, Ishikawa Y, Iguchi M, Kurita T (1999) Interaction between osteopontin on Madin Darby canine kidney cell membrane and calcium oxalate crystal. Urol Int 62: 81

    Article  CAS  PubMed  Google Scholar 

  8. Ebisuno S, Umehara M, Kohjimoto Y, Ohkawa T (1999) The effects of human urine on the adhesion of calcium oxalate crystals to Madin-Darby canine kidney cells. Br J Urol Int 84: 118

    Article  CAS  Google Scholar 

  9. Romijn JC, Schepers SJM, Duim RAJ, Schröder FH, Verkoelen CF (2001) Urinary crystallization inhibitors do not prevent crystal binding. In: DJ Kok, HC Romijn, PCMS Verhagen, CF Verkoelen (eds) Eurolithiasis, 9th European Symposium on Urolithiasis. Shaker, Maastricht, p 182

  10. Ryall RL, Fleming DE, Grover PK, Chauvet M, Dean CJ, Marshall VR (2000) The hole truth: intracrystalline proteins and calcium oxalate kidney stones. Mol Urol 4: 391

    CAS  PubMed  Google Scholar 

  11. Ryall RL, Fleming DE, Doyle IR, Evans NA, Dean CJ, Marshall VR (2001) Intracrystalline proteins and the hidden ultrastructure of calcium oxalate urinary crystals: implications for kidney stone formation. J Struct Biol 134: 5

    Article  PubMed  Google Scholar 

  12. Fleming DE, Van Riessen A, Chauvet MC, Grover PK, Hunter B, van Bronswijk W, Ryall RL (2003) Intracrystalline proteins and urolithiasis: a synchrotron X-ray diffraction study of calcium oxalate monohydrate. J Bone Miner Res 18: 1282

    CAS  PubMed  Google Scholar 

  13. Fleming DE, Doyle IR, Evans N, Marshall VR, Parkinson GM, Ryall RL (1999) Proteins associated with calcium oxalate crystals formed in human urine are intracrystalline. In: Borghi L, Meschi T, Briganti A, Schanchi T, Novarini A (eds) Proceedings of the 8th European Symposium on Urolithiasis. Editoriale Bios, Cosenza, p 359

  14. Ryall RL, Chauvet MC, Grover PK (2001) 2001: a space oddity. In: Kok DJ, Romijn HC, Verhagen PCMS, Verkoelen CF (eds) Eurolithiasis: 9th European Symposium on Urolithiasis. Shaker, Maastricht, p 273

  15. Webber D, Rodgers AL, Sturrock ED (2003) Selective inclusion of proteins into urinary calcium oxalate crystals: comparison between stone-prone and stone-free population groups. J Crys Growth 259: 179

    Article  CAS  Google Scholar 

  16. Ryall RL, Grover PK, Stapleton AMF, Barrell DK, Tang Y, Moritz RL, Simpson RJ (1995) The urinary F1 activation peptide of human prothrombin is a potent inhibitor of calcium oxalate crystallization in undiluted human urine in vitro. Clin Sci 89: 533

    CAS  PubMed  Google Scholar 

  17. Webber D, Rodgers AL, Sturrock ED (2002) Synergism between urinary prothrombin fragment 1 and urine: a comparison of inhibitory activities in stone-prone and stone-free population groups. Clin Chem Lab Med 40: 930

    CAS  PubMed  Google Scholar 

  18. Fleming DE, Grover PK, Chauvet MC, Marshall VR, Ryall RL (2000) An unexpected role of urinary proteins in the prevention of calcium oxalate urolithiasis. In: Rodgers AL, Hibbert BE, Hess B, Khan SR, Preminger GM (eds) Urolithiasis 2000. University of Cape Town, Cape Town, p 169

  19. Modlin M (1967) The aetiology of renal stone: a new concept arising from studies on a stone-free population. Ann R Coll Surg Eng 40: 155

    CAS  Google Scholar 

  20. Whalley NA, Moraes MFBG, Shar TG, Pretorius SS, Meyers AM (1998) Lithogenic risk factors in the urine of black and white subjects. Br J Urol 82: 785

    CAS  PubMed  Google Scholar 

  21. Jappie D, Rodgers AL (2000) Determination of the optimum number of subjects required for pooling of urines: statistical approach. In: Rodgers AL, Hibbert BE, Hess B, Khan SR, Preminger GM (eds) Urolithiasis 2000. University of Cape Town, Cape Town, p 92

  22. Ryall RL, Hibberd CM, Marshall VR (1985) A method for studying inhibitory activity in whole urine. Urol Res 13: 285

    Article  CAS  PubMed  Google Scholar 

  23. Doyle IR, Marshall VR, Dawson CJ, Ryall RL (1995) Calcium oxalate crystal matrix extract: the most potent macromolecular inhibitor of crystal growth and aggregation yet tested in undiluted human urine in vitro. Urol Res 23: 53

    Article  CAS  PubMed  Google Scholar 

  24. Stapleton AMF, Dawson CJ, Grover PK, Hohmann A, Comacchio R, Boswara V, Tang Y, Ryall RL (1996) Further evidence linking urolithiasis and blood coagulation: urinary prothrombin fragment 1 is present in stone matrix. Kidney Int 49: 880

    CAS  PubMed  Google Scholar 

  25. Denhardt DT, Guo X (1993) Osteopontin: a protein with diverse functions. FASEB J 7: 1475

    CAS  PubMed  Google Scholar 

  26. Hoyer JR, Pietrzyk RA, Liu H, Whitson PA (1999) Effects of microgravity on urinary osteopontin. J Am Soc Nephrol 10: S389

    Article  CAS  PubMed  Google Scholar 

  27. Addadi L, Aizenberg J, Beniash E, Weiner S (1999). On the concept of a single crystal in biomineralization. In: Braga D, Grepioni F, Orpen AG (eds) Crystal engineering: from molecules and crystals to materials. Kluwer, Netherlands, p 1

  28. Bautista DS, Denstedt J, Chambers AF, Harris AF (1996) Low molecular weight variants of osteopontin generated by serine proteases in urine of patients with kidney stones. J Cell Biochem 61: 402

    Article  CAS  PubMed  Google Scholar 

  29. Hartz PA, Wilson PD (1997) Functional defects in lysosomal enzymes in autosomal dominant polycystic kidney disease: abnormalities in synthesis, molecular processing, polarity and secretion. Biochem Mol Med 60: 8

    Article  CAS  PubMed  Google Scholar 

  30. Lepage L, Tawashi R (1982) Growth and characterization of calcium oxalate dihydrate crystals (weddelite). J Pharm Sci 71: 1059

    CAS  PubMed  Google Scholar 

  31. Tomažič BB, Nancollas GH (1980) The kinetics of dissolution of calcium oxalate hydrates II. The dihydrate. Invest Urol 18: 97

    PubMed  Google Scholar 

  32. Riese RJ, Riese JW, Kleinman JG, Wiessner JH, Mandel GS, Mandel NS (1988) Specificity in calcium oxalate adherence to papillary epithelial cells in culture. Am J Physiol 255: F1025

    CAS  PubMed  Google Scholar 

  33. Verkoelen CF, Romijn JC, De Bruijn WC, Boeve ER, Cao L, Schroder FH (1995) Association of calcium oxalate monohydrate crystals with MDCK cells. Kidney Int 48: 129

    CAS  PubMed  Google Scholar 

  34. Wesson JA, Worcester EM, Weissner JH, Mandel NS, Kleinman JG (1998) Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney Int 33: 952

    Google Scholar 

  35. Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalisation and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Calcif Tissue Int 58: 195

    Article  Google Scholar 

  36. Huang H-S, Chen J, Chen C-F (2000) Circulating adhesion molecules and neutral endopeptidase enzymuria in patients with urolithiasis and hydronephrosis. Urology 55: 961

    Article  CAS  PubMed  Google Scholar 

  37. Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129: 1161

    CAS  PubMed  Google Scholar 

  38. Hackett RL, Shevock PN, Khan SR (1994) Madin-Darby canine kidney cells are injured by exposure to oxalate and to calcium oxalate crystals. Urol Res 22: 197

    Article  CAS  PubMed  Google Scholar 

  39. Wesson JA, Worcester E (1996) Formation of hydrated calcium oxalates in the presence of poly-L-aspartic acid. Scanning Microsc 10: 415

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn Webber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webber, D., Chauvet, M.C. & Ryall, R.L. Proteolysis and partial dissolution of calcium oxalate: a comparative, morphological study of urinary crystals from black and white subjects. Urol Res 33, 273–284 (2005). https://doi.org/10.1007/s00240-005-0471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-005-0471-9

Keywords

Navigation