Urological Research

, Volume 33, Issue 1, pp 23–30 | Cite as

Contractile properties of inner and outer smooth muscle bundles from pig urinary detrusor

Original Paper

Abstract

Like in the human detrusor, the pig urinary detrusor muscle consists of two layers: compactly arranged smooth muscle bundles on the mucosal side (inner layer) and loosely arranged smooth muscle bundles on the serosal side (outer layer). The contractile properties of muscle bundles of both layers were measured using the stop test followed by an isometric contraction. Total and passive forces were measured in ten muscle bundles from the inner and outer muscle layers. Active force was defined as the difference between total and passive force. The curvature and the unloaded shortening velocity of the force-velocity relation were calculated from the shortening forces measured during the stop test. The rate of force development was calculated from the isometric contraction. Differences in contractile properties between both layers were pairwise tested using the Wilcoxon Signed Ranks test. Percentage wise, the outer layer muscle bundles produced the highest active isometric force. The shortening forces were also higher in the outer layer bundles. As a result, both the curvature and the unloaded shortening velocity, derived from the average force-velocity relations fitted to the data sets, were higher in the muscle bundles from this layer. Finally, the outer layer muscle bundles contracted significantly faster than those of the inner layer. Muscle bundles from the outer layer of pig detrusor were found to be faster and stronger (more phasic) than the weaker and slower (more tonic) bundles from the inner layer, suggesting that during bladder contraction the outer layer of the detrusor does more work than the inner layer.

Keywords

Smooth muscle Contractility Urinary bladder Stop test Pig 

References

  1. 1.
    Woodburne RT (1968) Anatomy of the bladder and bladder outlet. J Urol 100(4): 474–487PubMedGoogle Scholar
  2. 2.
    Arner A, Mattiasson A, Radzizewski P, Uvelius B (1998) Shortening velocity is different in longitudinal and circular muscle layers of the rabbit urethra. Urol Res 26(2): 423–426CrossRefPubMedGoogle Scholar
  3. 3.
    Khanna OP, Barbieri EJ, Altamura M, McMicheal R (1981) Vesicourethral smooth muscle: function and relation to structure. Urology 18(2): 211–218CrossRefPubMedGoogle Scholar
  4. 4.
    Brading AF, Teramoto N, Dass N, McCoy R (2001) Morphological and physiological characteristics of urethral circular and longitudinal smooth muscle. Scand J Urol Nephrol Suppl 207:12–18PubMedGoogle Scholar
  5. 5.
    Dass N, McMurray G, Greenland JE, Brading AF (2001) Morphological aspects of the female pig bladder neck and urethra: quantitative analysis using computer assisted 3-dimensional reconstructions. J Urol 165(4): 1294–1299PubMedGoogle Scholar
  6. 6.
    Ewalt DH, Howard PS, Blyth B, Snyder HM 3rd, Duckett JW, Levin RM, Macarak EJ (1992) Is lamina propria matrix responsible for normal bladder compliance? J Urol 148(2): 544–549PubMedGoogle Scholar
  7. 7.
    Chang SL, Chung JS, Yeng MK, Howard PS, Macarak EJ (1999) Roles of the lamina propria and the detrusor in tension transfer during bladder filling. Scand J Urol Nephrol Suppl 201:38–45PubMedGoogle Scholar
  8. 8.
    Teufl F, Dammann F, Wehrmann M (1997) In vitro study of morphology of the bladder wall using MR tomography at 1.0 Tesla: correlation with histology. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 166(5): 406–410PubMedGoogle Scholar
  9. 9.
    Narumi Y, Kadota T, Inoue E, Kuriyama K, Horinouche T, Kasai K, Maeda H, Kuroda M, Kotake T, Ishiguro S (1993.) Bladder wall morphology: in vitro MR imaging-histopathologic correlation. Radiology 187:151–155,PubMedGoogle Scholar
  10. 10.
    Dixon JS, Gosling JA (1983) Histology and fine structure of the muscularis mucosae of the human urinary bladder. J Anat 136(2): 265–271PubMedGoogle Scholar
  11. 11.
    Minekus JP, van Mastrigt R (2001) Length dependence of the contractility of pig detrusor smooth muscle bundles. Urol Res 29(2): 126–133CrossRefPubMedGoogle Scholar
  12. 12.
    van Mastrigt R (1980) Fitting the Hill equation to experimental data. IEEE transactions on biomedical engineering. Vol. BME 27(7): 412–416Google Scholar
  13. 13.
    van Koeveringe GA, van Mastrigt R (1991) Excitatory pathways in smooth muscle investigated by phase plot analysis of isometric force development. Am J Physiol 261(1): R138–R144PubMedGoogle Scholar
  14. 14.
    van Mastrigt R (2002) Mechanical properties of (urinary bladder) smooth muscle. J Muscle Res Cell Motil 23(1): 53–57CrossRefPubMedGoogle Scholar
  15. 15.
    Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126:136–195Google Scholar
  16. 16.
    Munro DD, Wendt IR (1993) Contractile and metabolic properties of longitudinal smooth muscle from rat urinary bladder and the effects of aging. J Urol 150:529–536PubMedGoogle Scholar
  17. 17.
    Pagala MK, Tetsoti L, Nagpal D, Wise GJ (2001) Aging effects on contractility of longitudinal and circular detrusor and trigone of rat bladder. J Urol 166(2): 721–727CrossRefPubMedGoogle Scholar
  18. 18.
    Schroder A, Uvelius B, Capello SA, Longhurst PA (2002) Regional differences in bladder enlargement and in vitro contractility after outlet obstruction in the rabbit. J Urol 168(3): 1240–1246CrossRefPubMedGoogle Scholar
  19. 19.
    Kuriyama H, Mishima K, Suzuki H (1975) Some differences in contractile response of isolated longitudinal and circular muscle from the guinea-pig stomach. J Physiol 251(2): 317–331PubMedGoogle Scholar
  20. 20.
    Moriya M, Miyazaki E (1985) Force-velocity characteristics of stomach muscle: a comparison between longitudinal and circular muscle strips. Comp Biochem Physiol A 81(3): 531–537CrossRefPubMedGoogle Scholar
  21. 21.
    Watanabe H, Yamamoto TY (1979) Autonomic innervation of the muscles in the wall of the bladder and proximal urethra of male rats. J Anat 128(4): 873–886PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • J. J. M. Pel
    • 1
  • E. van Asselt
    • 1
  • R. van Mastrigt
    • 1
  1. 1.Department of Urology, sector FuroreErasmus MC, room EE 1630RotterdamThe Netherlands

Personalised recommendations