Skip to main content

Ultrastructural basement membrane topography of the bladder epithelium


The basement membrane underlies epithelium and separates it from deeper tissues. Recent studies suggest that nanoscale topography of the surface of basement membrane may modulate adhesion, migration, proliferation and differentiation of overlying epithelium. This study was performed to elucidate nanoscale topographic features of basement membrane of the bladder. Bladder tissues were obtained from three adult female rhesus macaques. A process was developed to remove the epithelium while preserving the underlying basement membrane, and tissues were evaluated by immunohistochemistry and scanning electron microscopy (SEM). Detailed measurements were made of stereo SEM images to quantitatively define topographic features. Measurements made from multiple SEM images of bladder basement membrane provided the following values for topographic features: mean feature height, 178±57 nm; mean fiber diameters, 52±28 nm; mean pore diameter, 82±49 nm; and mean interpore distance (center to center), 127±54 nm. These dimensions are similar to those reported previously for basement membranes of other species and anatomical locations. This information provides a rational basis for design of nanostructured biomaterials to produce composite grafts for repair or replacement of segments of the urinary tract.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. 1.

    Miner JH (1999) Renal basement membrane components, Kidney Int 56:2016.

  2. 2.

    Miosge N (2001) The ultrastructural composition of basement membranes in vivo. Histol Histopathol 16: 1239

    CAS  PubMed  Google Scholar 

  3. 3.

    Dua HS, Gomes JA, Singh A (1994) Corneal epithelial wound healing. Brit J Ophthal 78: 401

    CAS  PubMed  Google Scholar 

  4. 4.

    Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120: 577

    CAS  PubMed  Google Scholar 

  5. 5.

    Mousa SA, Cheresh DA (1997) Recent advances in cell adhesion molecules and extracellular matrix proteins: potential clinical applications. Drug Discov Today 2: 187

    Article  CAS  Google Scholar 

  6. 6.

    Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, Davis GE (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114: 2755

    CAS  PubMed  Google Scholar 

  7. 7.

    Li X, Chen Y, Scheele S, Arman E, Haffner-Krausz R, Ekblom P, Lonai P (2001) Fibroblast growth factor signaling and basement membrane assembly are connected during epithelial morphogenesis of the embryoid body. J Cell Biol 153: 811

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Furuyama A, Iwata M, Hayashi T, Mochitate K (1999) Transforming growth factor-beta1 regulates basement membrane formation by alveolar epithelial cells in vitro. Eur J Cell Biol 78: 867

    CAS  PubMed  Google Scholar 

  9. 9.

    Cosgrove D, Rodgers K, Meehan D, Miller C, Bovard K, Gilroy A, Gardner H, Kotelianski V, Gotwals P, Amatucci A, Kalluri R (2000) Integrin alpha1beta1 and transforming growth factor-beta1 play distinct roles in alport glomerular pathogenesis and serve as dual targets for metabolic therapy. Am J Pathol 157: 1649

    CAS  PubMed  Google Scholar 

  10. 10.

    Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, Chen S, McGowan TA, Sharma K (2000) Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 97: 8015

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Inoue S (1994) Basic structure of basement membranes is a fine network of cords, irregular anastomosing strands, Microsc Res Techn 28: 29

    Google Scholar 

  12. 12.

    Merker HJ (1994) Morphology of the basement membrane. Microsc Res Techn 28: 95

    CAS  Google Scholar 

  13. 13.

    Ruben GC, Yurchenco PD (1994) High resolution platinum-carbon replication of freeze dried basement membrane. Microsc Res Techn 28: 13

    CAS  Google Scholar 

  14. 14.

    Hironaka K, Makino H, Yamsaki Y, Ota Z (1993) Renal basement membranes by ultrahigh resolution scanning electron microscopy. Kidney Int 43: 334

    CAS  PubMed  Google Scholar 

  15. 15.

    Kubosawa H, Kondo Y (1994) Quick-freeze, deep-etch studies of the renal basement membranes. Microsc Res Techn 28: 2

    CAS  Google Scholar 

  16. 16.

    Shirato I, Tomino Y, Koide H, Sakai T (1991) Fine structure of the glomerular basement membrane of the rat kidney visualized by high resolution scanning electron microscopy. Cell Tissue Res 266: 1

    CAS  PubMed  Google Scholar 

  17. 17.

    Yamasaki Y, Makino Y, Ota Z (1994) Meshwork structures in bovine glomerular and tubular basement membranes as revealed by ultra-high resolution scanning electron microscopy. Nephron 66: 189

    CAS  PubMed  Google Scholar 

  18. 18.

    Abrams GA, Teixeira AI, Nealey PF, Murphy CJ (2003) The effects of substratum topography on cell behavior. In: Dillow AK, Lowman A (eds) Biomimetic materials and design: interactive biointerfacial strategies, tissue engineering, and drug delivery, Marcel-Dekker, New York, p 91

  19. 19.

    Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ (2000) Nanoscale topography of the corneal epithelial basement membrane and Descemet's membrane of the human. Cornea 19: 57

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ (2000) Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tiss Res 299: 39

    CAS  Google Scholar 

  21. 21.

    Spurr SJ, Gibson IK (1985) Isolation of corneal epithelium with Dispase II or EDTA. Invest Ophthalmol Vis Sci 26: 818

    CAS  PubMed  Google Scholar 

  22. 22.

    Maser MD, Trimble JJ (1977) Rapid chemical dehydration of biological samples for scanning electron microscopy using 2,2-dimethoxypropane. J Histochem Cytochem 25: 247

    CAS  PubMed  Google Scholar 

  23. 23.

    Boyde A (1974) Three-dimensional aspects of SEM images. In: Well OC (ed) Scanning electron microscopy. McGraw-Hill, New York, p 277

  24. 24.

    Goodman SL (1999) Scanning electron microscopy evaluation of biomaterials. In: von Recum AV, Anderson JM (eds) Handbook of biomaterials evaluation: scientific, technical, and clinical testing of implant materials. Taylor and Francis, Philadelphia, p 613

  25. 25.

    Kim BS, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18: 2

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Atala A (2001) Bladder regeneration by tissue engineering. Br J Urol Int 88: 765

    Article  CAS  Google Scholar 

  27. 27.

    Shokeir AA (2002) Bladder regeneration: between the idea and reality. Br J Urol Int 89: 186

    Article  CAS  Google Scholar 

  28. 28.

    Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17: 149

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Fauza DO, Fishman SJ, Mehegan K, Atala A (1998) Videofetoscopically assisted fetal tissue engineering: bladder augmentation. J Pediatr Surg 33: 7

    CAS  PubMed  Google Scholar 

  30. 30.

    Pariente JL, Kim BS, Atala A (2001) In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. J Biomed Mater Res 55: 33

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Pariente JL, Kim BS, Atala A (2002) In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol 167: 1867

    PubMed  Google Scholar 

  32. 32.

    Berman M (1989) The pathogenesis of corneal epithelial defects. Acta Ophthalmol 192 [Suppl]: 55

    Google Scholar 

  33. 33.

    Den Braber ET, Jansen HV, de Boer MJ, Croes HJ, Elwenspoek M, Ginsel LA, Jansen JA (1998) Scanning electron microscopic, transmission electron microscopic, and confocal laser scanning microscopic observation of fibroblasts cultured on microgrooved surfaces of bulk titanium substrata. J Biomed Mater Res 40: 425

    Article  PubMed  Google Scholar 

  34. 34.

    Van Kooten TG, von Recum AF (1999) Cell adhesion to textured silicone surfaces: the influence of time of adhesion and texture on focal contact and fibronectin fibril formation. Tissue Eng 5: 223

    PubMed  Google Scholar 

  35. 35.

    Dalton BA, Evans MD, McFarland GA, Steele JG (1999) Modulation of corneal epithelial stratification by polymer surface topography. J Biomed Mater Res 45: 384

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Fitton JH, Dalton BA, Beumer G, Johnson G, Griesser HJ, Steele JG (1998) Surface topography can interfere with epithelial tissue migration. J Biomed Mater Res 42: 245

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Steele JG, Johnson G, McLean KM, Beumer GJ, Griesser HJ (2000) Effect of porosity and surface hydrophilicity on migration of epithelial tissue over synthetic polymer. J Biomed Mater Res 50: 475

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Holmes TC (2002) Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol 20: 16

    Article  CAS  PubMed  Google Scholar 

Download references


Funding was from NIH 1RO1 DK57258 (DEB), 1RO1 EY12253 (CJM), and 1RO8 EY00411 (GAA).

Author information



Corresponding author

Correspondence to Dale E. Bjorling.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abrams, G.A., Murphy, C.J., Wang, ZY. et al. Ultrastructural basement membrane topography of the bladder epithelium. Urol Res 31, 341–346 (2003).

Download citation


  • Bladder
  • Basement membrane
  • Nanoscale topography