Skip to main content
Log in

Evolution of Transcript Abundance is Influenced by Indels in Protein Low Complexity Regions

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Protein Protein low complexity regions (LCRs) are compositionally biased amino acid sequences, many of which have significant evolutionary impacts on the proteins which contain them. They are mutationally unstable experiencing higher rates of indels and substitutions than higher complexity regions. LCRs also impact the expression of their proteins, likely through multiple effects along the path from gene transcription, through translation, and eventual protein degradation. It has been observed that proteins which contain LCRs are associated with elevated transcript abundance (TAb), despite having lower protein abundance. We have gathered and integrated human data to investigate the co-evolution of TAb and LCRs through ancestral reconstructions and model inference using an approximate Bayesian calculation based method. We observe that on short evolutionary timescales TAb evolution is significantly impacted by changes in LCR length, with insertions driving TAb down. But in contrast, the observed data is best explained by indel rates in LCRs which are unaffected by shifts in TAb. Our work demonstrates a coupling between LCR and TAb evolution, and the utility of incorporating multiple responses into evolutionary analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Code Availability

Custom Perl and R scripts used for quality control of input data and reconstruction of ancestral TAb and LCR states can be found on Github at: www.github.com/zacherydickson/AncRecon-LCR-TAb. The program written to perform ABC inference of co-evolutionary models can be found on Github at: www.github.com/zacherydickson/ABC-LCR-TAb

References

  • Akaike H (1998) Selected Papers of Hirotugu Akaike. Chapter Information Theory and an Extension of the Maximum Likelihood Principle. Springer, New York, pp 199–213. https://doi.org/10.1007/978-1-4612-1694-0_15

    Book  Google Scholar 

  • Andrews S (2015) Fastqc. https://www.bioinformatics.babraham.ac.uk/projects/fastqc

  • Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Stat Comput 18:343–373

    Article  Google Scholar 

  • Beaumont M, Zhang W, Balding D (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedford T, Hartl D (2009) Optimization of gene expression by natural selection. Proc Natl Acad Sci USA 106:1133–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourque G, Leong B, Vega V, Chen X, Lee Y, Srinivasan K, Chew J, Ruan Y, Wei C, Ng H et al (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley R, Li X, Trapnell C, Davidson S, Pachter L, Chu H, Tonkin L, Biggin M, Eisen M (2010) Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol 8:e1000343

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrska-Bishop M, Evani U, Zhao X, Basile A, Abel H, Regier A, Corvelo A, Clarke W, Musunuri R, Nagulapalli K et al (2022) High-coverage whole-genome sequencing of the expanded 1000 genomes project cohort including 602 trios. Cell 185:3426-3440.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavali S, Chavali PL, Chalancon G, deGroot NS, Gemayel R, Latysheva NS, Ing-Simmons E, Verstrepen KJ, Balaji S, Babu MM (2017) Constraints and consequences of the emergence of amino acid repeats in eukaryotic proteins. Nat Struct Mol Biol 24:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook D, Andersen E (2017) VCF-kit: assorted utilities for the variant call format. Bioinformatics 33:1581–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet 9:909–16

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA, Zilversmit MM, Hartl DL (2006) On the abundance, amino acid composition, and evolutionary dynamics of low-complexity regions in proteins. Gene 378:19–30

    Article  CAS  PubMed  Google Scholar 

  • Dickson Z, Golding G (2022) Low complexity regions in mammalian proteins are associated with low protein abundance and high transcript abundance. Mol Biol Evol 39:mcac087

    Article  Google Scholar 

  • Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis C, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Dosztányi Z, Csizmók V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347:827–839

    Article  PubMed  Google Scholar 

  • Ebert P, Audano P, Zhu Q, Rodriguez-Martin B, Porubsky D, Bonder M, Sulovari A, Ebler J, Zhou W, SerraMari R et al (2021) Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372:abf7177

    Article  Google Scholar 

  • Enright J, Dickson Z, Golding G (2023) Low complexity regions in proteins and DNA are poorly correlated. Mol Biol Evol 40:msad084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416

    Article  Google Scholar 

  • Fomicheva A, Ross E (2021) From prions to stress granules: defining the compositional features of prion-like domains that promote different types of assemblies. Int J Mol Sci 22:1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding GB (1999) Simple sequence is abundant in eukaryotic proteins. Protein Sci 8:1358–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez CE, Roberts P, Ostermeier M (2019) Fitness effects of single amino acid insertions and deletions in tem-1 beta-lactamase. J Mol Biol 431:2320–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goolsby E (2017) Rapid maximum likelihood ancestral state reconstruction of continuous characters: a rerooting-free algorithm. Ecol Evol 7:2791–2797

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimwood J, Gordon L, Olsen A, Terry A, Schmutz J, Lamerdin J, Hellsten U, Goodstein D, Couronne O, Tran-Gyamfi M et al (2004) The DNA sequence and biology of human chromosome 19. Nature 428:529–535

    Article  CAS  PubMed  Google Scholar 

  • Haba Y, Kutsukake N (2019) A multivariate phylogenetic comparative method incorporating a flexible function between discrete and continuous traits. Evol Ecol 33:751–768

    Article  Google Scholar 

  • Haerty W, Golding G (2010) Low-complexity sequences and single amino acid repeats: not just “junk” peptide sequences. Genome 53:753–762

    Article  CAS  PubMed  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • He Q, Bardet A, Patton B, Purvis J, Johnston J, Paulson A, Gogol M, Stark A, Zeitlinger J (2011) High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat Genet 43:414–420

    Article  CAS  PubMed  Google Scholar 

  • Holst L (1980) On the lengths of the pieces of a stick broken at random. J Appl Probab 17:623–634

    Article  Google Scholar 

  • Horton C, Alexandari A, Hayes M, Marklund E, Schaepe J, Aditham A, Shah N, Suzuki P, Shrikumar A, Afek A et al (2023) Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 381:eadd1250

    Article  CAS  PubMed  Google Scholar 

  • Huntley M, Golding G (2000) Evolution of simple sequence in proteins. J Mol Evol 51:131–140

    Article  CAS  PubMed  Google Scholar 

  • Huntley M, Golding G (2002) Simple sequences are rare in the protein data bank. Proteins 48:134–140

    Article  CAS  PubMed  Google Scholar 

  • Huntley M, Golding G (2006) Selection and slippage creating serine homopolymers. Mol Biol Evol 23:2017–2025

    Article  CAS  PubMed  Google Scholar 

  • Huntley MA, Golding GB (2006) Selection and slippage creating serine homopolymers. Mol Biol Evol 23:2017–2025

    Article  CAS  PubMed  Google Scholar 

  • Karlin S, Brocchieri L, Bergman A, Mrázek J, Gentles AJ (2002) Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci 99:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer J (1953) Sequential minimax search for a maximum. Proc Am Math Soc 4:502–506

    Article  Google Scholar 

  • Kruglyak S, Durrett R, Schug M, Aquadro C (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz C, Haerty W, Golding GB (2014) Increased substitution rates surrounding low-complexity regions within primate proteins. Genome Biol Evol 6:655–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin M, Whitmire S, Chen J, Farrel A, Shi X, Jt Guo (2017) Effects of short indels on protein structure and function in human genomes. Sci Rep 7:9313

    Article  PubMed  PubMed Central  Google Scholar 

  • Love M, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Loya T, O’Rourke T, Reines D (2017) The hnRNP-like Nab3 termination factor can employ heterologous prion-like domains in place of its own essential low complexity domain. PLoS ONE 12:e0186187

    Article  PubMed  PubMed Central  Google Scholar 

  • Marjoram P, Molitor J, Plagnol V, Tavare S (2003) Markov chain Monte Carlo without likelihoods. Proc Natl Acad Sci U S A 100:15324–15328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin E, Mittag T (2018) Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry 57:2478–2487

    Article  CAS  PubMed  Google Scholar 

  • McGinnis S, Madden T (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mier P, Alanis-Lobato G, Andrade-Navarro MA (2017) Context characterization of amino acid homorepeats using evolution, position, and order. Proteins 85:709–719

    Article  CAS  PubMed  Google Scholar 

  • Minh B, Schmidt H, Chernomor O, Schrempf D, Woodhams M, vonHaeseler A, Lanfear R (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the Genomic Era. Mol Biol Evol 37:1530–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni X, Zhang Y, Negre N, Chen S, Long M, White K (2012) Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol 10:e1001420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odom D, Dowell R, Jacobsen E, Gordon W, Danford T, MacIsaac K, Rolfe P, Conboy C, Gifford D, Fraenkel E (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39:730–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pál C, Papp B, Hurst LD (2001) Highly expressed genes in yeast evolve slowly. Genetics 158:927–931

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry D, North A (1998) Hard alpha-keratin intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. J Struct Biol 122:67–75

    Article  CAS  PubMed  Google Scholar 

  • Persi E, Wolf Y, Karamycheva S, Makarova K, Koonin E (2023) Compensatory relationship between low-complexity regions and gene paralogy in the evolution of prokaryotes. Proc Natl Acad Sci USA 120:e2300154120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persikov A, Ramshaw J, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Pertea G, Antonescu C, Chang T, Mendell J, Salzberg S (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard J, Seielstad M, Perez-Lezaun A, Feldman M (1999) Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol Biol Evol 16:1791–1798

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Rohlfs R, Harrigan P, Nielsen R (2014) Modeling gene expression evolution with an extended Ornstein–Uhlenbeck process accounting for within-species variation. Mol Biol Evol 31:201–211

    Article  CAS  PubMed  Google Scholar 

  • Romero P, Obradovic Z, Li X, Garner E, Brown C, Dunker A (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  • Sainudiin R, Durrett R, Aquadro C, Nielsen R (2004) Microsatellite mutation models: insights from a comparison of humans and chimpanzees. Genetics 168:383–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmon S, Gagnon P (2022) Optimal scaling of random walk Metropolis algorithms using Bayesian large-sample asymptotics. Stat Comput 32:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, Murphy TD, Pruitt KD, Thibaud-Nissen F, Albracht D, et al. 2016. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. bioRxiv https://www.biorxiv.org/content/early/2016/08/30/072116

  • Sequencing C, Consortium A (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  Google Scholar 

  • Shen W, Ren H (2021) Taxonkit: a practical and efficient ncbi taxonomy toolkit. J Genet Genomics 48:844–850

    Article  PubMed  Google Scholar 

  • Shi J, Rabosky D (2015) Speciation dynamics during the global radiation of extant bats. Evolution 69:1528–1545

    Article  PubMed  Google Scholar 

  • Shumate A, Salzberg S (2021) Liftoff: accurate mapping of gene annotations. Bioinformatics 37:1639–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stajich J, Block D, Boulez K, Brenner S, Chervitz S, Dagdigian C, Fuellen G, Gilbert J, Korf I, Lapp H et al (2002) The bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vats D, Flegal JM, Jones GL. (2017). Multivariate output analysis for Markov chain Monte Carlo. arXiv:1512.07713

  • Villar D, Flicek P, Odom D (2014) Evolution of transcription factor binding in metazoans - mechanisms and functional implications. Nat Rev Genet 15:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall L, Christiansen T, Orwant J. 2000. Programming perl. " O’Reilly Media, Inc."

  • Werner M, Sieriebriennikov B, Prabh N, Loschko T, Lanz C, Sommer R (2018) Young genes have distinct gene structure, epigenetic profiles, and transcriptional regulation. Genome Res 28:1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wootton JC, Federhen S (1993) Statistics of local complexity in amino acid sequences and sequence databases. Computers Chem 17:149–163

    Article  CAS  Google Scholar 

  • Zhou K, Shi H, Lyu R, Wylder A, Matuszek Z, Pan J, He C, Parisien M, Pan T (2019) Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol Cell 76:70-81.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council of Canada (grants RGPIN-202-05733 to GBG and PGSD3-547476-2020 to ZWD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachery W. Dickson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.The funders had no role in the design ofthe study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Communicated by Minh Bui.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dickson, Z.W., Golding, G.B. Evolution of Transcript Abundance is Influenced by Indels in Protein Low Complexity Regions. J Mol Evol 92, 153–168 (2024). https://doi.org/10.1007/s00239-024-10158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-024-10158-z

Keywords

Navigation