Skip to main content
Log in

Structural Characterization of the Chlorophyllide a Oxygenase (CAO) Enzyme Through an In Silico Approach

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Chlorophyllide a oxygenase (CAO) is responsible for converting chlorophyll a to chlorophyll b in a two-step oxygenation reaction. CAO belongs to the family of Rieske-mononuclear iron oxygenases. Although the structure and reaction mechanism of other Rieske monooxygenases have been described, a member of plant Rieske non-heme iron-dependent monooxygenase has not been structurally characterized. The enzymes in this family usually form a trimeric structure and electrons are transferred between the non-heme iron site and the Rieske center of the adjoining subunits. CAO is supposed to form a similar structural arrangement. However, in Mamiellales such as Micromonas and Ostreococcus, CAO is encoded by two genes where non-heme iron site and Rieske cluster localize on the distinct polypeptides. It is not clear if they can form a similar structural organization to achieve the enzymatic activity. In this study, the tertiary structures of CAO from the model plant Arabidopsis thaliana and the Prasinophyte Micromonas pusilla were predicted by deep learning-based methods, followed by energy minimization and subsequent stereochemical quality assessment of the predicted models. Furthermore, the chlorophyll a binding cavity and the interaction of ferredoxin, which is the electron donor, on the surface of Micromonas CAO were predicted. The electron transfer pathway was predicted in Micromonas CAO and the overall structure of the CAO active site was conserved even though it forms a heterodimeric complex. The structures presented in this study will serve as a basis for understanding the reaction mechanism and regulation of the plant monooxygenase family to which CAO belongs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H (2006) Electron transfer complex formation between oxygenase and ferredoxin components in Rieske nonheme iron oxygenase system. Structure 14:1779

    Article  CAS  PubMed  Google Scholar 

  • Baek M, Park T, Heo L, Park C, Seok C (2017) GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res 45:W320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millán C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey S, Walters R, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794

    Article  CAS  PubMed  Google Scholar 

  • Berezin C, Glaser F, Rosenberg J, Paz I, Pupko T, Fariselli P, Casadio R, Ben-Tal N (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322

    Article  CAS  PubMed  Google Scholar 

  • Brimberry M, Garcia AA, Liu J, Tian J, Bridwell-Rabb J (2022) Engineering Rieske oxygenase activity one piece at a time. Curr Opin Chem Biol 72:102227

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryant DA, Hunter CN, Warren MJ (2020) Biosynthesis of the modified tetrapyrroles-the pigments of life. J Biol Chem 295:6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg TD, Ramaswamy S (2008) Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations. Curr Opin Chem Biol 12:134

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Croce R, Breton J, Bassi R (2001) The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276:35924

    Article  CAS  PubMed  Google Scholar 

  • Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Ann Rev Biochem 83:317

    Article  CAS  PubMed  Google Scholar 

  • Christoffer C, Chen S, Bharadwaj V, Aderinwale T, Kumar V, Hormati M, Kihara D (2021) LZerD webserver for pairwise and multiple protein-protein docking. Nucleic Acids Res 49:W359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costas M, Mehn MP, Jensen MP, Que L (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev 104:939

    Article  CAS  PubMed  Google Scholar 

  • Delano WL (2002) The PyMOL Molecular graphics system. http://www.pymol.org. Accessed 03 Mar 2023

  • D’Ordine RL, Rydel TJ, Storek MJ, Sturman EJ, Moshiri F, Bartlett RK, Brown GR, Eilers RJ, Dart C, Qi Y, Flasinski S, Franklin SJ (2009) Dicamba monooxygenase: structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation. J Mol Biol 392:481

    Article  CAS  PubMed  Google Scholar 

  • Espineda CE, Linford AS, Devine D, Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:10507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraro DJ, Gakhar L, Ramaswamy S (2005) Rieske business: structure-function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338:175

    Article  CAS  PubMed  Google Scholar 

  • Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J Mol Biol 342:1041

    Article  CAS  PubMed  Google Scholar 

  • Gakhar L, Malik ZA, Allen CCR, Lipscomb DA, Larkin MJ, Ramaswamy S (2005) Structure and increased thermostability of Rhodococcus sp. Naphthalene 1,2-dioxygenase. J Bacteriol 187:7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 47:685

    Article  CAS  Google Scholar 

  • Heo L, Lee H, Seok C (2016) GalaxyRefineComplex: refinement of protein-protein complex model structures driven by interface repacking. Sci Rep 6:32153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518

    Article  PubMed Central  Google Scholar 

  • Jia T, Ito H, Tanaka A (2016) Simultaneous regulation of antenna size and photosystem I/II stoichiometry in Arabidopsis thaliana. Planta 244:1041

    Article  CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Meth 14:587

    Article  CAS  Google Scholar 

  • Kovaleva EG, Lipscomb JD (2008) Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol 4:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunugi M, Takabayashi A, Tanaka A (2013) Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in Micromonas. J Biol Chem 288:19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A (2016) Evolution of green plants accompanied changes in light-harvesting systems. Plant Cell Physiol 57:1231

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283

    Article  CAS  Google Scholar 

  • Leconte J, Benites LF, Vannier T, Wincker P, Piganeau G, Jaillon O (2020) Genome resolved biogeography of Mamiellales. Genes (Basel) 11:66

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-F, Cheng C-W, Shih C-S, Hwang J-K, Yu C-S, Lu C-H (2016) MIB: Metal ion-binding site prediction and docking server. J Chem Inf Model 56:2287

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Knapp M, Jo M, Dill Z, Bridwell-Rabb J (2022) Rieske oxygenase catalyzed C–H bond functionalization reactions in chlorophyll b biosynthesis. ACS Central Science, Washington

    Book  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83

    Article  CAS  PubMed  Google Scholar 

  • Martins BM, Svetlitchnaia T, Dobbek H (2005) 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe-2S] center oxidation/reduction. Structure 13:817

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M (2012) Characterization of mutations in Barley fch2 Encoding Chlorophyllide a oxygenase. Plant Cell Physiol 53:1232

    Article  CAS  PubMed  Google Scholar 

  • Nagata N, Satoh S, Tanaka R, Tanaka A (2004) Domain structures of chlorophyllide a oxygenase of green plants and Prochlorothrix hollandica in relation to catalytic functions. Planta 218:1019

    Article  CAS  PubMed  Google Scholar 

  • Nojiri H, Ashikawa Y, Noguchi H, Nam J-W, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T (2005) Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase. J Mol Biol 351:355

    Article  CAS  PubMed  Google Scholar 

  • Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microbiol 70:4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. J Cheminform 3:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Rudiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305

    Article  CAS  PubMed  Google Scholar 

  • Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402:47

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Parales JV, Gibson DT (1999) Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity. J Bacteriol 181:1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park T, Won J, Baek M, Seok C (2021) GalaxyHeteromer: protein heterodimer structure prediction by template-based and ab initio docking. Nucleic Acids Res 49:W237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partensky F, Garczarek L (2010) Prochlorococcus: advantages and limits of minimalism. Ann Rev Mar Sci 2:305

    Article  PubMed  Google Scholar 

  • Perry C, de los Santos Emmanuel LC, Alkhalaf LM, Challis GL (2018) Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. Nat Prod Rep 35:622

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, SchÄFer W, Cmiel E, Katheder I, Scheer H (1994) The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Eur J Biochem 219:671

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Tanaka R, Yamasato A, Tanaka A (2009) Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. J Biol Chem 284:36689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh S, Tanaka A (2006) Identification of Chlorophyllide a oxygenase in the Prochlorococcus genome by a comparative genomic approach. Plant Cell Physiol 47:1622

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci: a Publ Protein Soc 27:135

    Article  CAS  Google Scholar 

  • Tanaka A, Tanaka R (2019) Chapter Six - The biochemistry, physiology, and evolution of the chlorophyll cycle. In: Grimm B (ed) Advances in botanical research. Academic Press, Cambridge, pp 183–212

    Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci USA 95:12719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439

    Article  CAS  PubMed  Google Scholar 

  • Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinform 10:407

    Article  Google Scholar 

  • Vitt S, Ma K, Warkentin E, Moll J, Pierik AJ, Shima S, Ermler U (2014) The F420-reducing [NiFe]-hydrogenase complex from Methanothermobacter marburgensis, the first X-ray structure of a group 3 family member. J Mol Biol 426:2813

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu L (2016) Crystal structure and catalytic mechanism of 7-Hydroxymethyl Chlorophyll a Reductase. J Biol Chem 291:13349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang Y (2010) How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics 26:889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang S, Hu Q, Gao S, Ma X, Zhang W, Shen Y, Chen F, Lai L, Pei J (2018) CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res 46:W374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32:3676

    Article  CAS  PubMed  Google Scholar 

  • Yamasato A, Nagata N, Tanaka R, Tanaka A (2005) The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell 17:1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Tao H, He J, Huang S-Y (2020) The HDOCK server for integrated protein–protein docking. Nat Protoc 15:1829

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Li Y, Zhang C, Zhou X, Pearce R, Bell EW, Huang X, Zhang Y (2021) Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Proteins 89:1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Ayumi Tanaka and Dr. Atsushi Takabayashi of Hokkaido University for the helpful discussions. This study was supported by funding from the Japan Society for the Promotion of Science through the KAKENHI Grant Numbers 20H03017 to RT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Ito.

Additional information

Handling editor: David Liberles.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1144 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, D., Tanaka, R. & Ito, H. Structural Characterization of the Chlorophyllide a Oxygenase (CAO) Enzyme Through an In Silico Approach. J Mol Evol 91, 225–235 (2023). https://doi.org/10.1007/s00239-023-10100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-023-10100-9

Keywords

Navigation