Skip to main content

Structural Computational Analysis of the Natural History of Class I aminoacyl-tRNA Synthetases Suggests their Role in Establishing the Genetic Code

Abstract

The evolutionary history of Class I aminoacyl-tRNA synthetases (aaRS) through the reconstruction of ancestral sequences is presented. From structural molecular modeling, we sought to understand its relationship with the acceptor arms and the tRNA anticodon loop, how this relationship was established, and the possible implications in determining the genetic code and the translation system. The results of the molecular docking showed that in 7 out 9 aaRS, the acceptor arm and the anticodon loop bond practically in the same region. Domain accretion process in aaRS and repositioning of interactions between tRNAs and aaRS are illustrated. Based on these results, we propose that the operational code and the anticodon code coexisted, competing for the aaRS catalytic region, while consequently contributed to the stabilization of these proteins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ambrogelly A, Korencic D, Ibba M (2002) Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer. J Bacteriol 184(16):4594–4600. https://doi.org/10.1128/JB.184.16.4594-4600.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Berman HM, Westbrook JD, Feng Z, Gilliland GL, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Brown JR, Doolittle WF (1999) Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J Mol Evol 49(4):485–495. https://doi.org/10.1007/pl00006571

    CAS  Article  PubMed  Google Scholar 

  4. Caetano-Anollés G, Wang M, Caetano-Anollés D (2013) Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility. PLoS ONE. https://doi.org/10.1371/journal.pone.0072225

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD, Stathopoulos C, Amoutzias GD (2017) The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic Acids Res 45(3):1059–1068. https://doi.org/10.1093/nar/gkw1182

    CAS  Article  PubMed  Google Scholar 

  6. Crnković A, Vargas-Rodriguez O, Söll D (2019) Plasticity and constraints of tRNA aminoacylation define directed evolution of aminoacyl-tRNA synthetases. Int J Mol Sci. https://doi.org/10.3390/ijms20092294

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cusack S, Härtlein M, Leberman R (1991) Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res 19:3489–3498. https://doi.org/10.1093/nar/19.13.3489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T (2020) Modeltest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37:291–294. https://doi.org/10.1093/molbev/msz189

    CAS  Article  PubMed  Google Scholar 

  9. de Duve C (1988) The second genetic code. Nature 333:117–118. https://doi.org/10.1038/333117a0

    Article  PubMed  Google Scholar 

  10. de Farias ST, Guimarães RC (2008) Aminoacyl-tRNA synthetase classes and groups in prokaryotes. J Theor Biol 250:221–229. https://doi.org/10.1016/j.jtbi.2007.09.025

    CAS  Article  PubMed  Google Scholar 

  11. de Farias ST, do Rêgo TG, José MV (2014) Evolution of tranfer RNA and the origin of the translation system. Front Genet 5:1–4. https://doi.org/10.3389/fgene.2014.00303

    CAS  Article  Google Scholar 

  12. de Farias ST, Antonino D, Rêgo TG, José MV (2019) Structural evolution of Glycyl-tRNA synthetases alpha subunit and its implication in the initial organization of the decoding system. Prog Biophys Mol Biol 142:43–50. https://doi.org/10.1016/j.pbiomolbio.2018.08.007

    CAS  Article  PubMed  Google Scholar 

  13. De Farias ST (2013) Suggested phylogeny of tRNAs based on the construction of ancestral sequences. J Theor Biol 335:245–248. https://doi.org/10.1016/j.jtbi.2013.06.033

    CAS  Article  PubMed  Google Scholar 

  14. De Pouplana LR, Schimmel P (2001) Operational RNA code for amino acids in relation to genetic code in evolution. J Biol Chem 276:6881–6884. https://doi.org/10.1074/jbc.R000032200

    Article  Google Scholar 

  15. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206. https://doi.org/10.1038/347203a0

    CAS  Article  PubMed  Google Scholar 

  16. Hamann CS, Hou YM (1995) Enzymic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide. Biochemistry 34:6527–6532. https://doi.org/10.1021/bi00019a034

    CAS  Article  PubMed  Google Scholar 

  17. Hanson-Smith V, Kolaczkowski B, Thornton JW (2010) Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Mol Biol Evol 27:1988–1999. https://doi.org/10.1093/molbev/msq081

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hou Y-M, Schimmel P (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333:140–145. https://doi.org/10.1038/333140a0

    CAS  Article  PubMed  Google Scholar 

  19. Katoh K, Rozewicki J, Yamada KD (2018) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    CAS  Article  Google Scholar 

  20. Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40:294–297. https://doi.org/10.1093/nar/gks493

    CAS  Article  Google Scholar 

  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Lamour V, Quevillon S, Diriong S, N’Guyen VC, Lipinski M, Mirande M (1994) Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc Natl Acad Sci USA 91(18):8670–8674. https://doi.org/10.1073/pnas.91.18.8670

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/s0021889892009944

    CAS  Article  Google Scholar 

  24. Möller W, Janssen GMC (1992) Statistical evidence for remnants of the primordial code in the acceptor stem of prokaryotic transfer RNA. J Mol Evol 34:471–477. https://doi.org/10.1007/BF00160461

    Article  PubMed  Google Scholar 

  25. Nagel GM, Doolittle RF (1991) Evolution and relatedness in two aminoacyl-tRNA synthetase families. Proc Natl Acad Sci USA 88:8121–8125. https://doi.org/10.1073/pnas.88.18.8121

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Nagel GM, Doolittle RF (1995) Phylogenetic analysis of the aminoacyl-tRNA synthetases. J Mol Evol 40:487–498. https://doi.org/10.1007/BF00166617

    CAS  Article  PubMed  Google Scholar 

  27. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    CAS  Article  Google Scholar 

  28. Park SJ, Schimmel P (1988) Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA. J Biol Chem 263:16527–16530. https://doi.org/10.1016/s0021-9258(18)37421-0

    CAS  Article  PubMed  Google Scholar 

  29. Ribas de Pouplana L (2020) The evolution of aminoacyl-tRNA synthetases: from dawn to LUCA. Enzymes 48:11–37. https://doi.org/10.1016/bs.enz.2020.08.001

    Article  PubMed  Google Scholar 

  30. Ritchie DW, Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26:2398–2405. https://doi.org/10.1093/bioinformatics/btq444

    CAS  Article  PubMed  Google Scholar 

  31. Rodin SN, Rodin AS (2008) On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100:341–355. https://doi.org/10.1038/sj.hdy.6801086

    CAS  Article  PubMed  Google Scholar 

  32. Rodin AS, Rodin SN, Carter CW (2009) On primordial sense-antisense coding. J Mol Evol 69:555–567. https://doi.org/10.1007/s00239-009-9288-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Root-Bernstein R, Kim Y, Sanjay A, Burton ZF (2016) tRNA evolution from the proto-tRNA minihelix world. Transcription 7:153–163. https://doi.org/10.1080/21541264.2016.1235527

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. https://doi.org/10.1038/nprot.2010.5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Saha R, Dasgupta S, Basu G, Roy S (2009) A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution. Biochem J 417:449–455. https://doi.org/10.1042/BJ20080747

    CAS  Article  PubMed  Google Scholar 

  36. Schwob E, Soll D (1993) Selection of a “minimal” glutaminyl-tRNA synthetase and the evolution of class I synthetases. EMBO J 12:5201–5208. https://doi.org/10.1002/j.1460-2075.1993.tb06215.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Sun FJ, Caetano-Anollés G (2008) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21–35. https://doi.org/10.1007/s00239-007-9050-8

    CAS  Article  PubMed  Google Scholar 

  38. Szathmáry E (1999) The origin of the genetic code: Amino acids as cofactors in an RNA world. Trends Genet 15:223–229. https://doi.org/10.1016/S0168-9525(99)01730-8

    Article  PubMed  Google Scholar 

  39. Treangen TJ, Rocha EPC (2011) Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet. https://doi.org/10.1371/journal.pgen.1001284

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vialle RA, Tamuri AU, Goldman N (2018) Alignment modulates ancestral sequence reconstruction accuracy. Mol Biol Evol 35:1783–1797. https://doi.org/10.1093/molbev/msy055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Wu J, Bu W, Sheppard K, Kitabatake M, Kwon ST, Söll D, Smith JL (2009) Insights into tRNA-dependent amidotransferase evolution and catalysis from the structure of the Aquifex aeolicus enzyme. J Mol Biol 391(4):703–716. https://doi.org/10.1016/j.jmb.2009.06.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309. https://doi.org/10.1093/nar/gki524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MVJ was funded by Dirección General de Asuntos del Personal Académico (DGAPA) and Universidad Nacional Autónoma de México, UNAM (PAPIIT-IN201019).

Funding

MVJ was financially supported by PAPIIT-IN201019; UNAM; México.

Author information

Affiliations

Authors

Contributions

Conceptualization: STF, PHL, and MVJ; Methodology: STF and PHL; Formal Analysis: STF and PHL; Investigation: STF and PHL; Resources: MVJ; Writing: Original and draft Preparation: STF, PHL and MVJ.

Corresponding author

Correspondence to Sávio Torres de Farias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

All authors consented.

Additional information

Handling editor: Ulrich Muller.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dantas, P.H.L.F., José, M.V. & de Farias, S.T. Structural Computational Analysis of the Natural History of Class I aminoacyl-tRNA Synthetases Suggests their Role in Establishing the Genetic Code. J Mol Evol (2021). https://doi.org/10.1007/s00239-021-10029-x

Download citation

Keywords

  • Genetic code
  • Operational code
  • Stabilization
  • Acceptor arm
  • Anticodon loop