Skip to main content

Codon Usage Bias: An Endless Tale

Abstract

Since the genetic code is degenerate, several codons are translated to the same amino acid. Although these triplets were historically considered to be “synonymous” and therefore expected to be used at rather equal frequencies in all genomes, we now know that this is not the case. Indeed, since several coding sequences were obtained in the late ‘70s and early ‘80s in the last century, coming from either the same or different species, it was evident that (a) each genome, taken globally, displayed different codon usage patterns, which means that different genomes display a particular global codon usage table when all genes are considered together, and (b) there is a strong intragenomic diversity: in other words, within a given species the codon usage pattern can (and usually do) differ greatly among genes in the same genome. These different patterns were attributed to two main factors: first, the mutational bias characteristic of each genome, which determines that GC− poor species display a general bias towards A/T codons while the reverse is true for GC− rich species. Second, the differences in codon usage among genes from the same species are due to natural selection acting at the level of translation, in such a way that highly expressed genes tend to use codons that match with the most abundant isoacceptor tRNAs. Thus, these genes are translated at a highest rate, which in turn leads to avoid the limiting factor in translation which is the number of available ribosomes per cell. Although these explanations are still valid, new factors are almost constantly postulated to affect codon usage. In this mini review, we shall try to summarize them.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Akashi H (1994) Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136(3):927–935

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Andersson G, Sharp P (1996) Codon usage in the Mycobacterium tuberculosis complex. Microbiology 142(Pt 4):915–925

    CAS  PubMed  Article  Google Scholar 

  3. Benisty H, Weber M, Hernandez-Alias X, Schaefer M, Serrano L (2020) Mutation bias within oncogene families is related to proliferation-specific codon usage. Proc Natl Acad Sci USA 117(48):30848–30856

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Bernardi G (2000) Isochores and the evolutionary genomics of vertebrates. Gene 241(1):3–17

    CAS  PubMed  Article  Google Scholar 

  5. Bernardi G, Bernardi G (1985) Codon usage and genome composition. J Mol Evol 22(4):363–365

    CAS  PubMed  Article  Google Scholar 

  6. Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24(1–2):1–11

    CAS  PubMed  Article  Google Scholar 

  7. Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Cartegni L, Chew S, Krainer A (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    CAS  PubMed  Article  Google Scholar 

  9. Chaney J, Clark P (2015) Roles for synonymous codon usage in protein biogenesis. Annu Rev Biophys 44:143–166

    CAS  PubMed  Article  Google Scholar 

  10. de Miranda AB, Alvarez-Valin F, Jabbari K, Degrave WM, Bernardi G (2000) Gene expression, amino acid conservation, and hydrophobicity are the main factors shaping codon preferences in Mycobacterium tuberculosis and Mycobacterium leprae. J Mol Evol 1:45–55

    Article  Google Scholar 

  11. Dhindsa R, Copeland B, Mustoe A, Goldstein D (2020) Natural selection shapes codon usage in the human genome. Am J Hum Genet 107(1):83–95

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genom Hum Genet 10:285–311

    CAS  Article  Google Scholar 

  13. Eyre-Walker A, Hurst L (2001) The evolution of isochores. Nat Rev Genet 2(7):549–555

    CAS  PubMed  Article  Google Scholar 

  14. Frenkel-Morgenstern M, Danon T, Christian T, Igarashi T, Cohen L, Hou Y-M, Jensen L (2012) Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels. Mol Syst Biol 8:572

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L (2018) Codon usage bias in animals: disentangling the effects of natural selection, effective population size, and GC-biased gene conversion. Mol Biol Evol 35(5):1092–1103

    CAS  PubMed  Article  Google Scholar 

  16. Goñi N, Iriarte A, Comas V, Sonora M, Moreno P, Moratorio G, Musto H, Cristina J (2012) Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development. Virol J 9:263

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res 10(22):7055–7074

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Grantham R, Gautier C, Gouy M, Mercier R, Pavé A (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8(1):r49–r62

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Hanson G, Coller J (2018) Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol 19(1):20–30

    CAS  PubMed  Article  Google Scholar 

  20. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2(1):13–34

    CAS  PubMed  Google Scholar 

  21. Iriarte A, Jara E, Leytón L, Diana L, Musto H (2014) General trends in selectively driven codon usage biases in the domain archaea. J Mol Evol 79(3–4):105–110

    CAS  PubMed  Article  Google Scholar 

  22. Kames J, Alexaki A, Holcomb DD, Santana-Quintero LV, Athey JC, Hamasaki-Katagiri N, Katneni U, Golikov A, Ibla JC, Bar H, Kimchi-Sarfaty C (2020) TissueCoCoPUTs: novel human tissue-specific codon and codon-pair usage tables based on differential tissue gene expression. J Mol Biol 432(11):3369–3378

    CAS  PubMed  Article  Google Scholar 

  23. Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T (2001) Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 53(4–5):290–298

    CAS  PubMed  Article  Google Scholar 

  24. Komar A (2016) The Yin and Yang of codon usage. Hum Mol Genet 25(R2):R77–R85

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Lafay B, Lloyd A, McLean M, Devine K, Sharp P, Wolfe K (1999) Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Res 27(7):1642–1649

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Lynn D, Singer G, Hickey D (2002) Synonymous codon usage is subject to selection in thermophilic bacteria. Nucleic Acids Res 30(19):4272–4277

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Makhoul C, Trifonov D (2002) Distribution of rare triplets along mRNA and their relation to protein folding. J Biomol Struct Dyn 20(3):413–420

    CAS  PubMed  Article  Google Scholar 

  28. McInerney J (1998) Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci USA 95(18):10698–10703

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Moratorio G, Iriarte A, Moreno P, Musto H, Cristina J (2013) A detailed comparative analysis on the overall codon usage patterns in West Nile virus. Infect Genet Evol 14:396–400

    CAS  PubMed  Article  Google Scholar 

  30. Musto H, Rodriguez-Maseda H, Bernardi G (1995) Compositional properties of nuclear genes from Plasmodium falciparum. Gene 152(1):127–132

    CAS  PubMed  Article  Google Scholar 

  31. Musto H, Romero H, Zavala A, Bernardi G (1999) Compositional correlations in the chicken genome. J Mol Evol 49(3):325–329

    CAS  PubMed  Article  Google Scholar 

  32. Musto H, Cruveiller S, D’Onofrio G, Romero H, Bernardi G (2001) Translational selection on codon usage in Xenopus laevis. Mol Biol Evol 18(9):1703–1707

    CAS  PubMed  Article  Google Scholar 

  33. Musto H, Romero H, Zavala A (2003) Translational selection is operative for synonymous codon usage in Clostridium perfringens and Clostridium acetobutylicum. Microbiology 149(Pt 4):855–863

    CAS  PubMed  Article  Google Scholar 

  34. Novoa E, Ribas de Pouplana L (2012) Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28(11):574–581

    CAS  PubMed  Article  Google Scholar 

  35. Novoa EM, Jungreis I, Jaillon O, Kellis M (2019) Elucidation of codon usage signatures across the domains of life. Mol Biol Evol 36(10):2328–2339

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Rima BK, McFerran NV (1997) Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J Gen Virol 78:2859–2870

    CAS  PubMed  Article  Google Scholar 

  37. Romero H, Zavala A, Musto H (2000) Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res 28(10):2084–2090

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Romero H, Zavala A, Musto H, Bernardi G (2003) The influence of translational selection on codon usage in fishes from the family Cyprinidae. Gene 317(1–2):141–147

    CAS  PubMed  Article  Google Scholar 

  39. Scaiewicz V, Sabbía V, Piovani R, Musto H (2006) CpG islands are the second main factor shaping codon usage in human genes. Biochem Biophys Res Commun 343(4):1257–1261

    CAS  PubMed  Article  Google Scholar 

  40. Simón D, Cristina J, Musto H (2021) Nucleotide composition and codon usage across viruses and their respective hosts. Front Microbiol 12:646300

    PubMed  PubMed Central  Article  Google Scholar 

  41. Tats A, Tenson T, Remm M (2008) Preferred and avoided codon pairs in three domains of life. BMC Genom 9:463

    Article  CAS  Google Scholar 

  42. Zalucki Y, Beacham R, Jennings M (2009) Biased codon usage in signal peptides: a role in protein export. Trends Microbiol 17:146–150

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank PEDECIBA and the Sistema Nacional de Investigadores, Uruguay, for partial financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Héctor Musto.

Additional information

Handling editor: David Liberles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iriarte, A., Lamolle, G. & Musto, H. Codon Usage Bias: An Endless Tale. J Mol Evol (2021). https://doi.org/10.1007/s00239-021-10027-z

Download citation