Skip to main content

Moderate Amounts of Epistasis are Not Evolutionarily Stable in Small Populations

Abstract

High mutation rates select for the evolution of mutational robustness where populations inhabit flat fitness peaks with little epistasis, protecting them from lethal mutagenesis. Recent evidence suggests that a different effect protects small populations from extinction via the accumulation of deleterious mutations. In drift robustness, populations tend to occupy peaks with steep flanks and positive epistasis between mutations. However, it is not known what happens when mutation rates are high and population sizes are small at the same time. Using a simple fitness model with variable epistasis, we show that the equilibrium fitness has a minimum as a function of the parameter that tunes epistasis, implying that this critical point is an unstable fixed point for evolutionary trajectories. In agent-based simulations of evolution at finite mutation rate, we demonstrate that when mutations can change epistasis, trajectories with a subcritical value of epistasis evolve to decrease epistasis, while those with supercritical initial points evolve towards higher epistasis. These two fixed points can be identified with mutational and drift robustness, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. The present model in which fitness declines as a function of genetic distance from the wild type (modulated by epistasis) gives rise to conclusions similar to what Fisher’s geometric model would predict, even though in Fisher’s model the distance from wild type is phenotypic rather than genetic (Tenaillon et al. 2007).

  2. Note that while technically the low-q fixed point is \(q=0\), this value cannot be attained in any realistic population as such a landscape is completely neutral (\(f=1\)) in this limit.

References

  • Adami C (1998) Introduction to artificial life. Springer, New York

    Book  Google Scholar 

  • Adami C, Ofria C, Collier TC (2000) Evolution of biological complexity. Proc Natl Acad Sci 97:4463–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aita T, Morinaga S, Husimi Y (2004) Thermodynamical interpretation of evolutionary dynamics on a fitness landscape in a evolution reactor. I Bull Math Biol 66:1371–1403

    Article  PubMed  Google Scholar 

  • Barton NH (1995) A general model for the evolution of recombination. Genet Res 65:123–145

    Article  CAS  PubMed  Google Scholar 

  • Barton NH, Coe JB (2009) On the application of statistical physics to evolutionary biology. J Theor Biol 259:317–324

    Article  CAS  PubMed  Google Scholar 

  • Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski RE (2007) Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol 7:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonhoeffer S, Chappey C, Parkin NT, Whitcomb JM, Petropoulos CJ (2004) Evidence for positive epistasis in HIV-1. Science 306:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Bull JJ, Sanjuan R, Wilke CO (2007) Theory of lethal mutagenesis for viruses. J Virol 81:2930–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch CL, Chao L (2004) Epistasis and its relationship to canalization in the RNA virus phi 6. Genetics 167:559–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlesworth B (1976) Recombination modification in a fluctuating environment. Genetics 83:181–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Visser JA, Hoekstra RF, van den Ende H (1997) An experimental test for synergistic epistasis and its application in chlamydomonas. Genetics 145:815–819

    PubMed  Google Scholar 

  • Elena SF, Lenski R (1997) Test of synergistic interactions among deleterious mutations in bacteria. Nature 390:395–397

    Article  CAS  PubMed  Google Scholar 

  • Franklin J, LaBar T, Adami C (2019) Mapping the peaks: fitness landscapes of the fittest and the flattest. Artif Life 25:250–262

    Article  PubMed  Google Scholar 

  • Gibson G, Wagner G (2000) Canalization in evolutionary genetics: a stabilizing theory? BioEssays 22:372–380

    Article  CAS  PubMed  Google Scholar 

  • Goyal S, Balick DJ, Jerison ER, Neher RA, Shraiman BI, Desai MM (2012) Dynamic mutation-selection balance as an evolutionary attractor. Genetics 191:1309–1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Gros P-A, Le Nagard H, Tenaillon O (2009) The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics 182:277–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigh J (1978) The accumulation of deleterious genes in a population—Muller’s ratchet. Theor Popul Biol 14:251–267

    Article  CAS  PubMed  Google Scholar 

  • Iwasa Y (1988) Free fitness that always increases in evolution. J Theor Biol 135:265–281

    Article  CAS  PubMed  Google Scholar 

  • Jasnos L, Korona R (2007) Epistatic buffering of fitness loss in yeast double deletion strains. Nat Genet 39:550–554

    Article  CAS  PubMed  Google Scholar 

  • Kirby LE, Koslowsky D (2017) Mitochondrial dual-coding genes in Trypanosoma brucei. PLoS Negl Trop Dis 11:e0005989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koffi M, De Meeûs T, Bucheton B, Solano P, Camara M, Kaba D, Cuny G, Ayala FJ, Jamonneau V (2009) Population genetics of Trypanosoma brucei gambiense, the agent of sleeping sickness in western africa. Proc Natl Acad Sci USA 106:209–214

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AS (1982) Selection against harmful mutations in large sexual and asexual populations. Genet Res 40:325–332

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov AS (1994) Muller’s ratchet under epistatic selection. Genetics 136:1469–1473

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaBar T, Adami C (2017) Evolution of drift robustness in small populations of digital organisms. Nat Commun 8:1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lan Y, Trout A, Weinreich D M, Wylie C S (2017) Natural selection can favor the evolution of ratchet robustness over evolution of mutational robustness. bioRxiv 122087

  • Lynch M, Bürger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84:339–344

    Article  CAS  PubMed  Google Scholar 

  • McCandlish DM, Stoltzfus A (2014) Modeling evolution using the probability of fixation: history and implications. Q Rev Biol 89:225–252

    Article  PubMed  Google Scholar 

  • Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Roučka Š, Saboo A, Fernando I, Kulal S, Cimrman R, Scopatz A (2017) SymPy: symbolic computing in Python. PeerJ Comput Sci 3:e103

    Article  Google Scholar 

  • Oberle M, Balmer O, Brun R, Roditi I (2010) Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog 6:e1001023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ofria C, Bryson DM, Wilke CO (2009) Avida: a software platform for research in computational evolutionary biology. In: Komosinski M, Adamatzky A (eds) Artificial life models in software. Springer, London, pp 3–35

    Chapter  Google Scholar 

  • Oliphant TE (2006) A guide to NumPy. Trelgol Publishing, New York

    Google Scholar 

  • Østman B, Hintze A, Adami C (2012) Impact of epistasis and pleiotropy on evolutionary adaptation. Proc R Soc B 279:247–256

    Article  PubMed  Google Scholar 

  • Python Software Foundation (2019) The Python language reference. Python Software Foundation, Wilmington

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sanjuán R, Cuevas JM, Moya A, Elena SF (2005) Epistasis and the adaptability of an RNA virus. Genetics 170:1001–1008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanjuán R, Cuevas JM, Furió V, Holmes EC, Moya A (2007) Selection for robustness in mutagenized RNA viruses. PLoS Genet 3:e93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scharloo W (1991) Canalization: genetic and developmental aspects. Annu Rev Ecol Syst 22:65–93

    Article  Google Scholar 

  • Sella G, Hirsh AE (2005) The application of statistical physics to evolutionary biology. Proc Natl Acad Sci USA 102:9541–9546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speijer D (2006) Is kinetoplastid pan-editing the result of an evolutionary balancing act? IUBMB Life 58:91–96

    Article  CAS  PubMed  Google Scholar 

  • Tenaillon O, Silander OK, Uzan J-P, Chao L (2007) Quantifying organismal complexity using a population genetic approach. PLoS ONE 2:e217

    Article  PubMed  PubMed Central  Google Scholar 

  • Westy SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12:1003–1012

    Article  Google Scholar 

  • Wickham H, Averick M, Bryan J, Chang W, D’Agostino McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Lin Pedersen T, Miller E, Milton Bache S, Müller K, Ooms J, Robinson D, Paige Seidel D, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H (2019) Welcome to the tidyverse. J Open Source Softw 4:1686

    Article  Google Scholar 

  • Wilke CO, Adami C (2001) Interaction between directional epistasis and average mutational effects. Proc R Soc Lond B 268:1469–1474

    Article  CAS  Google Scholar 

  • Wilke CO, Adami C (2003) Evolution of mutational robustness. Mutat Res 522:3–11

    Article  CAS  PubMed  Google Scholar 

  • Wilke CO, Wang JL, Ofria C, Lenski RE, Adami C (2001) Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412:331–333

    Article  CAS  PubMed  Google Scholar 

  • Wolf JB, Brodie ED III, Wade MJ (eds) (2000) Epistasis and the evolutionary process. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We are grateful to an anonymous reviewer who drew our attention to the existence of the weaker secondary minimum of Eq. (2) at high epistasis. This work was supported in part by the National Science Foundation’s BEACON Center for the Study of Evolution in Action, under Contract No. DBI-0939454.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus O. Wilke.

Additional information

Handling editor: David Liberles.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sydykova, D.K., LaBar, T., Adami, C. et al. Moderate Amounts of Epistasis are Not Evolutionarily Stable in Small Populations. J Mol Evol 88, 435–444 (2020). https://doi.org/10.1007/s00239-020-09942-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-020-09942-4

Keywords

  • Epistasis
  • Drift robustness
  • Mutational robustness
  • Small populations