Advertisement

Adaptive Evolution of C-Type Lysozyme in Vampire Bats

  • Chunzheng He
  • Yujia Wei
  • Yubo Zhu
  • Yu Xia
  • David M. Irwin
  • Yang LiuEmail author
Original Article

Abstract

In mammals, chicken-type (c-type) lysozymes are part of the innate immune system, killing bacteria by degrading peptidoglycan in their cell walls. Many of the studies on the evolution of c-type lysozymes have focused on its new digestive function, including the duplicated stomach lysozymes in ruminants. Similarly, in bats, gene duplications and subsequent adaptive evolution of c-type lysozyme have been reported in a clade of insectivorous species, which might have been driven by the need to digest chitin. However, no studies on the evolution of c-type lysozyme have been carried out in the second largest and dietary diverse bat family Phyllostomidae, which includes insectivorous, frugivorous, nectarivorous and sanguivorous species. Here, we sequenced and analyzed c-type lysozyme genes from four phyllostomid bats, the common vampire bat, the white-winged vampire bat, the lesser long-nosed bat and the big fruit-eating bat. Only a single lysozyme gene was identified in each of these species. Evidence for positive selection on mature lysozyme was found on lineages leading to vampire bats, but not other bats with single copy lysozyme genes. Moreover, several amino acid substitutions found in mature lysozymes from the sanguivorous clade are predicted to have functional impacts, adding further evidence for the adaptive evolution of lysozyme in vampire bats. Functional adaptation of vampire bat lysozymes could be associated with anti-microbial defense, possibly driven by the specialized sanguivory-related habits of vampire bats.

Keywords

Chiroptera Vampire bat Chicken-type lysozyme Positive selection Sanguivorous 

Notes

Acknowledgements

We thank Yi-Hsuan Pan for helpful comments. This work was supported by grants from the Ministry of Science and Technology of the People’s Republic of China (No. 2016YFD0500300) and the National Natural Science Foundation of China (No. 31601855) to YL.

Author Contributions

YL conceived the study and contributed experimental reagents/materials; CH, YW and YX did the experiments; CH, YW and YL analyzed the data; CH, YW, YZ, DMI and YL wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

239_2019_9910_MOESM1_ESM.pdf (242 kb)
Supplementary file1 (PDF 242 kb)

References

  1. Becker DJ, Czirjak GA, Volokhov DV, Bentz AB, Carrera JE, Camus MS, Navara KJ, Chizhikov VE, Fenton MB, Simmons NB, Recuenco SE, Gilbert AT, Altizer S, Streicker DG (2018) Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos Trans R Soc B 373:20170089CrossRefGoogle Scholar
  2. Benavides JA, Shiva C, Virhuez M, Tello C, Appelgren A, Vendrell J, Solassol J, Godreuil S, Streicker DG (2018) Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus rotundus and livestock in Peru. Zoonoses Public Health 65:454–458CrossRefGoogle Scholar
  3. Bielawski JP, Yang Z (2004) A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol 59:121–132CrossRefGoogle Scholar
  4. Bobrowiec PED, Lemes MR, Gribel R (2015) Prey preference of the common vampire bat (Desmodus rotundus, Chiroptera) using molecular analysis. J Mammal 96:54–63Google Scholar
  5. Cámara VM, Prieur DJ (1984) Secretion of colonic isozyme of lysozyme in association with cecotrophy of rabbits. Am J Physiol 247:G19–G23Google Scholar
  6. Callewaert L, Michiels CW (2010) Lysozymes in the animal kingdom. J Biosci 35:127–160CrossRefGoogle Scholar
  7. Carter G, Leffer L (2015) Social grooming in bats: are vampire bats exceptional? PLoS ONE 10:e0138430CrossRefGoogle Scholar
  8. Carter GG, Coen CE, Stenzler LM, Lovette IJ (2006) Avian host DNA isolated from the feces of white-winged vampire bats (Diaemus youngi). Acta Chiropt 8:255–274CrossRefGoogle Scholar
  9. Carter GG, Wilkinson GS (2015) Carter GG, Wilkinson GS (2015) Social benefits of non-kin food sharing by female vampire bats. Proc R Soc B 282:20152524CrossRefGoogle Scholar
  10. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747CrossRefGoogle Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefGoogle Scholar
  12. Datzmann T, von Helversen O, Mayer F (2010) Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evol Biol 10:165CrossRefGoogle Scholar
  13. Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants. I. Distribution and catalytic properties. J Biol Chem 259:11607–11616Google Scholar
  14. Elizalde-Arellano C, López-Vidal JC, Arroyo-Cabrales J, Medellín RA, Laundré JW (2007) Food sharing behavior in the hairy-legged vampire bat Diphylla ecaudata. Acta Chiropt 9:314–319CrossRefGoogle Scholar
  15. Francischetti IM, Assumpcao TC, Ma D, Li Y, Vicente EC, Uieda W, Ribeiro JM (2013) The "Vampirome": transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies. J Proteomics 82:288–319CrossRefGoogle Scholar
  16. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723CrossRefGoogle Scholar
  17. Gunnell GF, Simmons NB (2005) Fossil evidence and the origin of bats. J Mamm Evol 12:209–246CrossRefGoogle Scholar
  18. Hammer MF, Schilling JW, Prager EM, Wilson AC (1987) Recruitment of lysozyme as a major enzyme in the mouse gut: duplication, divergence, and regulatory evolution. J Mol Evol 24:272–279CrossRefGoogle Scholar
  19. Irwin DM (2004) Evolution of cow nonstomach lysozyme genes. Genome 47:1082–1090CrossRefGoogle Scholar
  20. Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264:11387–11393Google Scholar
  21. Ito F, Bernard E, Torres RA (2016) What is for dinner? First report of human blood in the diet of the hairy-legged vampire bat Diphylla ecaudata. Acta Chiropt 18:509–515CrossRefGoogle Scholar
  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  23. Kunz TH, Fenton MB (2003) Bat ecology. University of Chicago Press, ChicagoGoogle Scholar
  24. Leelapaibul W, Bumrungsri S, Pattanawiboon A (2005) Diet of wrinkle-lipped free-tailed bat (Tadarida plicata Buchannan, 1800) in central Thailand: insectivorous bats potentially act as biological pest control agents. Acta Chiropt 7:111–119CrossRefGoogle Scholar
  25. Liu Y, He G, Xu H, Han X, Jones G, Rossiter SJ, Zhang S (2014) Adaptive functional diversification of lysozyme in insectivorous bats. Mol Biol Evol 31:2829–2835CrossRefGoogle Scholar
  26. Miller-Butterworth CM, Murphy WJ, O'Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, miniopterus. Mol Biol Evol 24:1553–1561CrossRefGoogle Scholar
  27. Monteiro LR, Nogueira MR (2011) Evolutionary patterns and processes in the radiation of phyllostomid bats. BMC Evol Biol 11:137CrossRefGoogle Scholar
  28. Pacheco MA, Concepcion JL, Rangel JD, Ruiz MC, Michelangeli F, Dominguez-Bello MG (2007) Stomach lysozymes of the three-toed sloth (Bradypus variegatus), an arboreal folivore from the Neotropics. Comp Biochem Physiol A 147:808–819CrossRefGoogle Scholar
  29. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  30. Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder MD (eds) Mammal species of the world: a taxonomic and geographic reference. Baltimore: The Johns Hopkins University Press.Google Scholar
  31. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  32. Stewart CB, Wilson AC (1987) Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. Cold Spring Harb Symp Quant Biol 52:891–899CrossRefGoogle Scholar
  33. Stockmaier S, Bolnick DI, Page RA, Carter GG (2018) An immune challenge reduces social grooming in vampire bats. Anim Behav 140:141–149CrossRefGoogle Scholar
  34. Swanson KW, Irwin DM, Wilson AC (1991) Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. J Mol Evol 33:418–425CrossRefGoogle Scholar
  35. Takano K, Yamagata Y, Yutani K (2000) Role of amino acid residues at turns in the conformational stability and folding of human lysozyme. Biochemistry 39:8655–8665CrossRefGoogle Scholar
  36. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584CrossRefGoogle Scholar
  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  38. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303CrossRefGoogle Scholar
  39. Weadick CJ, Chang BS (2012) An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol 29:1297–1300CrossRefGoogle Scholar
  40. Wen Y, Irwin DM (1999) Mosaic evolution of ruminant stomach lysozyme genes. Mol Phylogenetics Evol 13:474–482CrossRefGoogle Scholar
  41. Wilkinson GS (1984) Reciprocal food sharing in the vampire bat. Nature 308:181CrossRefGoogle Scholar
  42. Wilkinson GS (1986) Social grooming in the common vampire bat, Desmodus rotundus. Anim Behav 34:1880–1889CrossRefGoogle Scholar
  43. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573CrossRefGoogle Scholar
  44. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefGoogle Scholar
  45. Zepeda Mendoza ML, Xiong Z, Escalera-Zamudio M, Runge AK, Theze J, Streicker D, Frank HK, Loza-Rubio E, Liu S, Ryder OA, Samaniego Castruita JA, Katzourakis A, Pacheco G, Taboada B, Lober U, Pybus OG, Li Y, Rojas-Anaya E, Bohmann K, Carmona Baez A, Arias CF, Liu S, Greenwood AD, Bertelsen MF, White NE, Bunce M, Zhang G, Sicheritz-Ponten T, Gilbert MPT (2018) Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat. Nat Ecol Evol 2:659–668CrossRefGoogle Scholar
  46. Zhang JZ, Nielsen R, Yang ZH (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
  2. 2.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada

Personalised recommendations