Skip to main content
Log in

Gene Encoding a Novel Enzyme of LDH2/MDH2 Family is Lost in Plant and Animal Genomes During Transition to Land

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

l-Lactate/malate dehydrogenases (LDH/MDH) and type 2 l-lactate/malate dehydrogenases (LDH2/MDH2) belong to NADH/NADPH-dependent oxidoreductases (anaerobic dehydrogenases). They form a large protein superfamily with multiple enzyme homologs found in all branches of life: from bacteria and archaea to eukaryotes, and play an essential role in metabolism. Here, we describe the gene encoding a new enzyme of LDH2/MDH2 oxidoreductase family. This gene is found in genomes of all studied groups/classes of bacteria and fungi. In the plant kingdom, this gene was observed only in algae, but not in bryophyta or spermatophyta. This gene is present in all taxonomic groups of animal kingdom beginning with protozoa, but is lost in lungfishes and other, higher taxa of vertebrates (amphibians, reptiles, avians and mammals). Since the gene encoding the new enzyme is found only in taxa associated with the aquatic environment, we named it AqE (aquatic enzyme). We demonstrated that AqE gene is convergently lost in different independent lineages of animals and plants. Interestingly, the loss of the gene is consistently associated with transition from aquatic to terrestrial life forms, which suggests that this enzyme is essential in aquatic environment, but redundant or even detrimental in terrestrial organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albalat R, Cañestro C (2016) Evolution by gene loss. Nat Rev Genet 17(7):379–391

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450(7167):203–218

    Article  CAS  PubMed  Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denger K, Cook AM (2010) Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. Microbiology 156:967–974

    Article  CAS  PubMed  Google Scholar 

  • Drouin G, Godin JR, Pagé B (2011) The genetics of vitamin C loss in vertebrates. Curr Genom 12(5):371–378. https://doi.org/10.2174/138920211796429736

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewin V (2010) Dead in the water. Nature 466(7308):812–814

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Huertas B, Mitchell RF, Lapoint RT, Faucher CP, Hildebrand JG, Whiteman NK (2015) Evolution of herbivory in Drosophilidae linked to loss of behaviors, antennal responses, odorant receptors, and ancestral diet. Proc Natl Acad Sci USA 112:3026–3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graupner M, Xu H, White RH (2000) Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. J Bacteriol 182:3688–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg AJ, Moran JR, Coyne JA, Wu CI (2003) Ecological adaptation during incipient speciation revealed by precise gene replacement. Science 302:1754–1757

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanisms and process of physiological evolution. Oxford Univesity Press, New York

    Google Scholar 

  • Honka E, Fabry S, Niermann T, Palm P, Hensel R (1990) Properties and primary structure of the l-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. Eur J Biochem 188(3):623–632

    Article  CAS  PubMed  Google Scholar 

  • Irimia A, Madern D, Vellieux FMD (2004) Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J 23:1234–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isani G, Cattani O, Tacconi S, Carpene E, Cortesi P (1986) Energy metabolism during anaerobiosis and the recovery of the posterior adductor muscle of Scapharca inaequivalvis. Nova Thalass 8(3):575–576

    Google Scholar 

  • Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H et al (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klyashtorin LB (1982) Water respiration and oxygen demands of fishes. Legkaya and Pishchevaya Promyshlennost, Мoscow (in Russian)

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin L (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol Annu Rev 41:1–45

    Google Scholar 

  • Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45(D):200–203

    Article  CAS  Google Scholar 

  • McBride CS, Arguello JR, O’Meara BC (2007) Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177:1395–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosci Discuss 6(2):3655–3706

    Article  Google Scholar 

  • Mommsen TP, French CJ, Hochachka PW (1980) Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can J Zool 58(10):1785–1799

    Article  CAS  Google Scholar 

  • Moreau R, Dabrowski K (1998) Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): an agnathan fish with gulonolactone oxidase activity. Proc Natl Acad Sci USA 95:10279–10282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Soldatov AA, Savina MV (2008) Effect of hypoxia on the content and stoichiometry of cytochromes in muscle of the gray mullet Liza aurata. J Evol Biochem Physiol 44(5):599–604

    Article  CAS  Google Scholar 

  • Soldatov AA, Andreenko TI, Sysoeva IV, Sysoev AA (2009) Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia. J Evol Biochem Physiol 45(3):349–355

    Article  CAS  Google Scholar 

  • Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW et al (2004) Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428:415–418

    Article  CAS  PubMed  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69(9):5656–5663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Li W, Liu S, Xu J (2016) RaptorX-Property: a web server for protein structure property prediction. Nucleic Acids Res 44(W1):W430–W435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1–2):203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Russian Academy of Sciences Research Grant No. AAAA-A18-118021490093-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Puzakov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakova, L.V., Puzakov, M.V. & Soldatov, A.A. Gene Encoding a Novel Enzyme of LDH2/MDH2 Family is Lost in Plant and Animal Genomes During Transition to Land. J Mol Evol 87, 52–59 (2019). https://doi.org/10.1007/s00239-018-9884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-018-9884-2

Keywords

Navigation