Skip to main content
Log in

Alarmones as Vestiges of a Bygone RNA World

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

All known alarmones are ribonucleotides or ribonucleotide derivatives that are synthesized when cells are under stress conditions, triggering a stringent response that affects major processes such as replication, gene expression, and metabolism. The ample phylogenetic distribution of alarmones (e.g., cAMP, Ap(n)A, cGMP, AICAR, and ZTP) suggests that they are very ancient molecules that may have already been present in cellular systems prior to the evolutionary divergence of the Archaea, Bacteria, and Eukarya domains. Their chemical structure, wide biological distribution, and functional role in highly conserved cellular processes support the possibility that these modified nucleotides are molecular fossils of an epoch in the evolution of chemical signaling and metabolite sensing during which RNA molecules played a much more conspicuous role in biological catalysis and genetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The PyMol Molecular Graphics System, Version 2.0 Schrödinger, LLC.

References

  • Abranches J, Martinez AR, Kajfasz JK, Chávez V, Garsin DA, Lemos JA (2009) The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis. J Bacteriol 191:2248–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artymiuk PJ, Poirrette AR, Rice DW, Willett P (1997) A polymerase I palm in adenylyl cyclase? Nature 388:33–34

    Article  CAS  PubMed  Google Scholar 

  • Atkinson GC, Tenson T, Hauryliuk V (2011) The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PloS ONE 6:e23479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey S, Wing RA, Steitz TA (2006) The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerase. Cell 126:893–904

    Article  CAS  PubMed  Google Scholar 

  • Baker DA, Kelly JM (2004) Structure, function and evolution of microbial adenylyl and guanylyl cyclases. Mol Microbiol 52:1229–1242

    Article  CAS  PubMed  Google Scholar 

  • Balodimos IA, Kashket ER, Rapaport E (1988) Metabolism of adenylylated nucleotides in Clostridium acetobutylicum. J Bacteriol 170:2301–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassler J, Schultz JE, Lupas AN (2018) Adenylate cyclases: receivers, transducers, and generators of signals. Cell Signal 46:135–144

    Article  CAS  PubMed  Google Scholar 

  • Battesti A, Bouveret E (2006) Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62:1048–1063

    Article  CAS  PubMed  Google Scholar 

  • Bazurto JV, Heitman NJ, Downs DM (2015) Aminoimidazole carboxamide ribotide exerts opposing effects on thiamine synthesis in Salmonella enterica. J Bacteriol 197:2821–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becerra A, Delaye L, Islas S, Lazcano A (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu Rev Ecol Evol Syst 38:361–379

    Article  Google Scholar 

  • Berleman JE, Hasselbring BM, Bauer CE (2004) Hypercyst mutants in Rhodospirillum centenum identity regulatory loci involved in cyst cell differentiation. J Bacteriol 186:5834–5841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shinyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharati BK, Chatterji D (2013) Quorum sensing and pathogenesis: role of small signaling molecules in bacterial persistence. Curr Sci 105:643–656

    CAS  Google Scholar 

  • Bierger B, Essen LO (2001) Structural analysis of adenylate cyclases from Trypanosoma brucei in their monomeric state. EMBO J 20:433–445

    Article  Google Scholar 

  • Bochner BR, Ames BN (1982) ZTP (5-amino 4-imidazole carboxamide riboside 5′-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency. Cell 29:929–937

    Article  CAS  PubMed  Google Scholar 

  • Bochner BR, Lee PC, Wilson SW, Cutler CW, Ames BN (1984) AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37:225–232

    Article  CAS  PubMed  Google Scholar 

  • Bonaventura C, Cashon R, Colacino JM, Hilderman RH (1992) Alteration of hemoglobin function by diadenosine 5′,5″-PP1,P4-tetraphosphate and other alarmones. J Biol Chem 267:4652–4657

    CAS  PubMed  Google Scholar 

  • Boratyn GM, Schäffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL (2012) Domain enhanced lookup time accelerated BLAST. Biol Direct 7:1–14

    Article  CAS  Google Scholar 

  • Breaker RR (2010) RNA second messengers and riboswitches: relics from the RNA World? Microbe 5:13–20

    Google Scholar 

  • Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4:a003566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan MP, Smith KE, Cleaves IIHJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA 108:13995–13998

    Article  PubMed  PubMed Central  Google Scholar 

  • Cashel M, Gallant J (1974) Cellular regulation of guanosine tetraphosphate and guanosine pentaphosphate. In: Nomura M, Tissières A, Lengyel P (eds) Ribosomes. Cold Spring Harbor, New York, pp 733–745

    Google Scholar 

  • Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4:160–165

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gottesman S (2014) Riboswitch regulates RNA. Science 345:876–877

    Article  CAS  PubMed  Google Scholar 

  • Chen Z-H, Schaap P (2012) The prokaryote messenger c-di-GMP triggers stalk cell differentiation in Dictiostelium. Nature 488:680–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li N, Ellington AD (2007) Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 4:633–655

    Article  CAS  PubMed  Google Scholar 

  • Copper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883

    Article  Google Scholar 

  • Corrigan RM, Gründling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11:513–524

    Article  CAS  PubMed  Google Scholar 

  • Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci USA 110:9084–9089

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Ari R, Casadesús J (1998) Underground metabolism. Bioessays 20:181–186

    Article  PubMed  Google Scholar 

  • Daignan-Fornier B, Pinson B (2012) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5′-monophosphate (AICAR), a highly conserved purine intermediate with multiple effects. Metabolites 2:292–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS (2010) ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 74:171–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Fuente-Nuñez C, Reffuveille F, Haney EF, Straus SK, Hancock RE (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eakin RE (1963) An approach to the evolution of metabolism. Proc Natl Acad Sci USA 49:360–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311

    Article  CAS  PubMed  Google Scholar 

  • Flärdh K, Axberg T, Albertson NH, Kjelleberg S (1994) Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene. J Bacteriol 176:5949–5957

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores NA, Stavrou BM, Sheridan DJ (1999) The effects of diadenosine polyphosphate on the cardiovascular system. Cardiovasc Res 42:15–26

    Article  CAS  PubMed  Google Scholar 

  • Gallant J, Palmer L, Pao CC (1977) Anomalous synthesis of ppGpp in growing cells. Cell 11:181–185

    Article  CAS  PubMed  Google Scholar 

  • Garrison PN, Mathis SA, Barnes LD (1986) In vivo levels of diademosine tetraphosphate and adenosine tetraphospho-guanosine in Physarum polycephalum during the cell cycle and oxidative stress. Mol Cell Biol 6:1179–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger T, Wolz C (2014) Intersection of the stringent response and the CodY regulon in low GC gram-positive bacteria. Int J Med Microbiol 304:150–155

    Article  CAS  PubMed  Google Scholar 

  • Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, Schrenzel J, Lalk M, Wolz C (2012) The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog 8:e1003016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes K, Maisonneuve E (2015) Remarkable functional convergence: alarmone ppGpp mediates persistence by activating type I and II toxin–antitoxins. Mol Cell 59:1–3

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Article  Google Scholar 

  • Gomelsky M (2011) cAMP, c-di-GMP, c-di-AMP and now cGMP: bacteria use them all! Mol Microbiol 79:562–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Plaza JJ (2018) Small RNAs in cell-to-cell- communications during bacterial infection. FEMS Microbiol Lett 365:1–9

    Article  CAS  Google Scholar 

  • Hall J, Ralph EC, Shanker S, Wang H, Byrnes LJ, Horst R, Wong J, Brault A, Dumlao D, Smith JF, Dakin LA, Schmitt DC, Trujillo J, Vincent F, Griffor M, Aulabaugh AE (2017) The catalytic mechanism of cyclic GMP-AMP synthase (cGAS) and implications for innate immunity and inhibition. Protein Sci 26:2367–2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handler P (1961) Evolution of the coenzymes. In: Oparin AI (ed) Proceedings of the 5th International Congress of Biochemistry. Macmillan, New York, pp 149–157

    Google Scholar 

  • Haseltine WA, Block R (1973) Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosome. Proc Natl Acad Sci USA 70:1564–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hood EE, Armour S, Ownby JD, Handa AK, Bressan RA (1979) Effect of nitrogen starvation on the level of adenosine 3′,5′-monophosphate in Anabaena variabilis. Biochim Biophys Acta 588:193–200

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Bugg CW, Yarus M (2000) RNA-catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. Biochemistry 39:15548–15555

    Article  CAS  PubMed  Google Scholar 

  • Jácome R, Becerra A, de León SP, Lazcano A (2015) Structural analysis of monomeric RNA-dependent polymerases: evolutionary and therapeutic implications. PLoS ONE 10:e0139001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284

    Article  CAS  PubMed  Google Scholar 

  • Jones CP, Ferré-D’Amaré AR (2015) Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains. Nat Struct Mol Biol 22:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:457–462

    Article  CAS  Google Scholar 

  • Kasahara M, Ohmori M (1999) Activation of a cyanobacterial adenylate cyclase, CyaC, by autophosphorylation and subsequent phosphotransfer reaction. J Biol Chem 274:15167–15172

    Article  CAS  PubMed  Google Scholar 

  • Kellenberger CA, Wilson SC, Hickey SF, Gonzalez TL, Su Y, Hallberg ZF, Brewer TF, Lavarone AT, Carlson HK, Hsieh YF, Hammond MC (2015) GEMM-I riboswitches from geobacter sense the bacterial second messenger cyclic AMP-GMP. Proc Natl Acad Sci USA 112:5383–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 60:2256–2268

    Article  CAS  PubMed  Google Scholar 

  • Krol E, Becker A (2011) ppGpp in Sinorhizobium meliloti: biosynthesis in response to sudden nutritional downshifts and modulation of transcriptome. Mol Microbiol 81:1233–1254

    Article  CAS  PubMed  Google Scholar 

  • Lamers MH, Georgescu RE, Lee SG, O´Donnell M, Kuriyan J (2006) Crystal structure of the catalytic α subunit of E. coli replicative DNA polymerase III. Cell 126:881–892

    Article  CAS  PubMed  Google Scholar 

  • Lazcano A (2014) The RNA World: stepping out of the shadows. In: Gabriel T (ed) Why does evolution matter? The importance of understanding evolution. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 101–119

    Google Scholar 

  • Lazcano A (2018) Prebiotic evolution and self assembly of nucleic acids. ACS Nano. https://doi.org/10.1021/acsnano.8b07605

    Article  PubMed  Google Scholar 

  • Lazcano A, Becerra A, Delaye L (2011) Alarmones. In: Margulis L, Asikainen CA, Krumbie WE (ed) Chimeras and consciousness: evolution of the sensory self. The MIT Press, Massachusetts Institute of Technology, Cambridge, pp 35–43

    Google Scholar 

  • Lee PC, Bochner BR, Ames BN (1983a) Diadenosine 5′,5‴-P1,P4-tetraphosphate and related adenylyllated nucleotides in Salmonella typhimurium. J Biol Chem 258:6827–6834

    CAS  PubMed  Google Scholar 

  • Lee PC, Bochner BR, Ames BN (1983b) AppppA, heat-shock stress, and cell oxidation. Proc Natl Acad Sci USA 80:7496–7500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:242–245

    Article  CAS  Google Scholar 

  • Lori C, Ozaki S, Steiner S, Böhm R, Abel S, Dubey BN, Schirmer T, Hiller S, Jenal U (2015) Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 523:236–239

    Article  CAS  PubMed  Google Scholar 

  • Magnusson LU, Farewell A, Nyström T (2005) ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13:236–242

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell 157:539–548

    Article  CAS  PubMed  Google Scholar 

  • Majerfeld I, Puthenvedu D, Yarus M (2016) Cross-backbone templating; ribonucleotides made on poly(C). RNA 22:397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonough KA, Rodriguez A (2011) The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nat Rev Microbiol 10:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehne FM, Gunka K, Eilers H, Herzberg C, Kaever V, Stülke J (2013) Cyclic di-AMP homeostasis in Bacillus subtilis: both lack in high level accumulation of the nucleotide are detrimental for cell growth. J Biol Chem 288:2004–2017

    Article  CAS  PubMed  Google Scholar 

  • Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by cyclic guanosine 3′,5′-cyclic monophosphate-dependent protein kinase. Circulation 108:2172–2183

    Article  PubMed  Google Scholar 

  • Nelson JW, Breaker RR (2017) The lost language of the RNA World. Sci Signal 10:1–10

    Article  CAS  Google Scholar 

  • Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9:834–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE, Sulston JE (1971) Polynucleotide replication and the origin of life. In: Kimball AP, Oro J (ed) Prebiotic and biochemical evolution. North-Holland, Amsterdam, pp 89–94

    Google Scholar 

  • Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun 2:407–412

    Article  Google Scholar 

  • Pendergast W, Yerxa BR, Douglass JG III, Shaver SR, Dougherty RW, Redick CC, Sims IF, Rideout JL (2001) Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5′-polyphosphates. Bioorg Med Chem Lett 11:157–160

    Article  CAS  PubMed  Google Scholar 

  • Pesavento C, Hengge R (2009) Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12:170–176

    Article  CAS  PubMed  Google Scholar 

  • Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93:1034–1046

    Article  CAS  PubMed  Google Scholar 

  • Poole K (2012) Bacterial stress responses as determinants of antimicrobial resistance. J Antimicrob Chemother 67:2069–2089

    Article  CAS  PubMed  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51

    Article  CAS  PubMed  Google Scholar 

  • Pullman B (1972) Electronic factors in biochemical evolution. In: Ponnamperuna C (ed) Exobiology. North Holland Publishing Company, Amsterdam, pp 136–169

    Google Scholar 

  • Puthenvedu D, Janas T, Majerfeld I, Illangasekare M, Yarus M (2015) Poly(u) RNA-templated synthesis of AppA. RNA 21:1818–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapaport E, Zamecnik PC (1976) Presence of diadenosine 5′,5″-P1,P4-tetraphosphate (Ap4A) in mammals cells in levels varying widely with proliferative activity of the tissue: a possible positive “pleiotypic activator”. Proc Natl Acad Sci USA 73:3984–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios AC, Tor Y (2013) On the origin of the canonical nucleobases: an assessment of selection pressures across chemical and early biological evolution. Isr J Chem 53:469–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritson D, Sutherland JD (2012) Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat Chem 4:895–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero D, Traxler MF, López D, Kolter R (2011) Antibiotics as signal molecules. Chem Rev 111:5492–5505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    Article  CAS  PubMed  Google Scholar 

  • Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285:41501–41508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabina RL, Holmes EW, Becker MA (1984) The enzymatic synthesis of 5-amino-4-imidazolecarboxamide riboside triphosphate (ZTP). Science 16:1193–1195

    Article  Google Scholar 

  • Saha S, Jia Z, Liu D, Misra HP (2011) The roles of cAMP and G protein signaling in oxidative stress-induced cardiovascular dysfunction. In: Basu S, Wiklund L (ed) Studies on experimental models. Humana Press, Totowa, pp 621–635

    Chapter  Google Scholar 

  • Sakaguchi K, Tsujino M, Hayashi M, Kawai K, Mizuno K, Hayano K (1976) Mode of action of bredinin with guanylic acid on L5178Y mouse leukemia cells. J Antibiot 12:1320–1327

    Article  Google Scholar 

  • Sanders KM, Ward SM (1992) Nitric oxide as a mediator of nonadrenergic, noncholinergic neurotransmission. Am J Physiol 262:379–392

    Google Scholar 

  • Seifert R, Beste K, Burhenne H, Voigt U, Wolter S, Hammerschmidt A, Reinecke D, Sandner P, Pich A, Schwede F, Genieser HG, Kaever V (2011) Cyclic CMP and cyclic UMP: new (old) second messengers. BMC Pharmacol 11:O34

    Article  PubMed Central  Google Scholar 

  • Shenoy AR, Visweswariah SS (2004) ClassIII nucleotide cyclases in bacteria and archaebacterial: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases. FEBS Lett 561:11–21

    Article  CAS  Google Scholar 

  • Shenoy AR, Sivakumar K, Krupa A, Srinivasan N, Visweswariah SS (2004) A survey of nucleotide cyclases in actinobacteria: unique domain organization and expansion of the class III cyclase family in Mycobacterium tuberculosis. Comp Funct Genomics 5:17–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherlock ME, Sudarsan N, Breaker RR (2018) Riboswitches for the alarmone ppGpp expands the collection of RNA-based signaling systems. Proc Natl Acad Sci USA 21:1–6

    Google Scholar 

  • Sidi Y, Mitchel BS (1985) Z-nucleotide accumulation in erythrocytes from Lesch–Nyhan patients. J Clin Invest 76:2416–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spira B, Silberstein N, Yagil E (1995) Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for Pi. J Bacteriol 177:4053–4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stent GS, Brenner S (1961) A genetic locus for the regulation of ribonucleic acid synthesis. Proc Nat Acad Sci USA 47:2005–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens JC, Artz SW, Ames BN (1975) Guanosine 5′-diphosphate 3′-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Nat Acad Sci USA 72:4389–4393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbiah S, Laurents DV, Levitt M (1993) Structural similarity of DNA-binding domains of bacteriophage repressors and the globin score. Curr Biol 3:141–148

    Article  CAS  PubMed  Google Scholar 

  • Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 18:411–413

    Article  CAS  Google Scholar 

  • Suhadolnik RJ (1979) Naturally occurring nucleoside and nucleotide antibiotics. Prog Nucleic Acid Res Mol Biol 22:193–291

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Wu J, Du F, Chen F, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791

    Article  CAS  PubMed  Google Scholar 

  • Sunahara RK, Beuve A, Tesmer JJ, Sprang SR, Garbers DL, Gilman AG (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 273:16332–16338

    Article  CAS  PubMed  Google Scholar 

  • Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Lavarone AT, Sauer JD, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158:1389–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamayo R, Pratt JT, Camilli A (2007) Role of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas CB, Meade JC, Holmes EW (1981) Aminoimidazole carboxamide ribonucleoside toxicity: a model for study of pyrimidine starvation. J Cell Physiol 107:335–344

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Salazar A, Lazcano A (2018) Early life: embracing the RNA World. Curr Biol 5:220–222

    Article  CAS  Google Scholar 

  • Vázquez-Salazar A, Tan G, Stockton A, Fani R, Becerra A, Lazcano A (2017) Can an imidazole be formed from an alanyl-seryl-glycine tripeptide under possible prebiotic conditions? Orig Life Evol Biosph 47:345–354

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Salazar A, Becerra A, Lazcano A (2018) Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines. PLoS ONE 13:e0196349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinella D, Albrecht C, Cashel M, D’Ari R (2005) Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 56:958–970

    Article  CAS  PubMed  Google Scholar 

  • Warner TD, Mitchell JA, Sheng H, Murad F (1994) Effects of cyclic GMP on smooth muscle relaxation. Adv Pharmacol 26:171–194

    Article  CAS  PubMed  Google Scholar 

  • White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    Article  CAS  PubMed  Google Scholar 

  • White HB (1982) Evolution of coenzymes and the origin of pyridine nucleotides. In: Everse J, Anderson B, You KS (ed) The pyridine nucleotide coenzymes. Academic Press, Cambridge, pp. 1–17

    Google Scholar 

  • Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    Article  CAS  PubMed  Google Scholar 

  • Witte G, Hartung S, Büttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30:167–178

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ (2013) Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–830

    Article  CAS  PubMed  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signaling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Li W, He ZG (2013) DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. J Biol Chem 288:3085–3096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ricardo Hernández Morales is a doctoral student from the Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM). Financial support from PAPIIT-UNAM (IN223916) is gratefully acknowledged. We are indebted to Samuel Ponce de León for many insightful discussions, Alberto Vázquez-Salazar for providing useful references for this work, and José Alberto Campillo Balderas, Rodrigo Jácome, and Adriana Benítez for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lazcano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Monophyletic origin of the catalytic core of polymerases and adenylate-, guanylate- and diguanylate cyclases. The universal distribution of the palm domain in all living beings suggests this is a very ancient domain which was duplicated and recruited many times during the evolutionary history of polymerases and cyclases. (TIFF 293 KB)

Supplementary Fig. 2

Common origin of the non-canonical palm and the catalytic site of cGAMP synthase. (A) Structural alignment of non-canonical palm domain (1BPY - yellow color) and catalytic site of cGAMP synthase (4TXY – green color). (B) Representation of the monophyletic origin of the catalytic core of polymerase III and β, and cGAMP synthase. (TIFF 547 KB)

Supplementary Table S1

Diversity of alarmones and the biological processes they regulate. Columns include information about the alarmones, the enzymes involved in their biosynthesis and degradation, the stress condition which lead to an increase in their concentration, and the processes that they regulate as described by the reference in the last column. (XLSX 16 KB)

Supplementary Table S2

Distribution (presence-absence) of biosynthetic and degradative enzymes of alarmones in completely sequenced cellular genomes. In first column are enzymes analyzed in this work. Other columns contain the acronyms for each organism’s genome analyzed. Letter “H” indicates that a homologous hit was found in the genome. Letters in each column of the table represent the acronym for each organism’s genome from KEGG database. (XLSX 1654 KB)

Supplementary Table S3

Alarmone biosynthetic and degradative enzymes and their homologous sequences encoded by dsDNA virus with no RNA stage in their biological cycle. Columns, from left to right, indicate: enzyme code (EC), protein identification code, virus type, viral family, and some parameters used on the search. (XLSX 18 KB)

Supplementary Table S4

Protein domains associated with adenylyl cyclases (class III) and their functions. (XLSX 15 KB)

Supplementary Table S5

Polymerase-mediated reaction and the biosynthetic reactions that produce alarmones. (XLSX 11 KB)

Supplementary Table S6

Hypothetical ribozyme-mediated alarmone-biosynthetic reactions. Ribozymes have the ability to catalyze a considerable number of chemical reactions (Table 1). Some of these reactions such as ribozymic polymerization or self-cleaving could lead to the synthesis and accumulation of alarmones. (XLSX 11 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Morales, R., Becerra, A. & Lazcano, A. Alarmones as Vestiges of a Bygone RNA World. J Mol Evol 87, 37–51 (2019). https://doi.org/10.1007/s00239-018-9883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-018-9883-3

Keywords

Navigation